



# ARTIFICIAL INTELLIGENCE TASKFORCE

REPORT AND RECOMMENDATIONS



## Table of Contents

|                                                        |           |
|--------------------------------------------------------|-----------|
| <b>Artificial Intelligence Taskforce Members .....</b> | <b>i</b>  |
| <b>AI Taskforce Overview.....</b>                      | <b>ii</b> |
| <b>AI Taskforce Executive Summary.....</b>             | <b>1</b>  |
| Rationale: .....                                       | 1         |
| High-Level Recommendations:.....                       | 2         |
| <b>KU AI Taskforce Report.....</b>                     | <b>4</b>  |
| <b>Introduction.....</b>                               | <b>4</b>  |
| <b>Academic Integration and Learning Outcomes.....</b> | <b>4</b>  |
| Summary .....                                          | 4         |
| Strategic Priorities.....                              | 5         |
| Key Recommendations .....                              | 5         |
| Implementation Strategies .....                        | 6         |
| Support and Resources .....                            | 7         |
| <b>AI Awareness and Strategic Communication.....</b>   | <b>9</b>  |
| Summary .....                                          | 9         |
| Strategic Priorities.....                              | 9         |
| Key Recommendations .....                              | 10        |
| Implementation Strategies .....                        | 12        |
| Support and Resources .....                            | 13        |
| <b>AI Competency Development .....</b>                 | <b>15</b> |
| Summary .....                                          | 15        |
| Strategic Priorities.....                              | 15        |
| Key Recommendations .....                              | 16        |
| Implementation Strategies .....                        | 18        |
| Support and Resources .....                            | 19        |
| <b>Infrastructure and Technology Readiness .....</b>   | <b>21</b> |
| Summary .....                                          | 21        |
| Strategic Priorities.....                              | 21        |
| Key Recommendations .....                              | 22        |
| Implementation Strategies .....                        | 24        |
| Support and Resources .....                            | 25        |
| <b>University Operations and Student Affairs .....</b> | <b>27</b> |
| Summary .....                                          | 27        |
| Strategic Priorities.....                              | 27        |
| Key Recommendations .....                              | 28        |
| Implementation Strategies .....                        | 30        |
| Support and Resources .....                            | 31        |
| <b>Student Success and Career Readiness .....</b>      | <b>33</b> |
| Summary .....                                          | 33        |
| Strategic Priorities.....                              | 33        |
| Key Recommendations .....                              | 34        |
| Implementation Strategies .....                        | 37        |
| Support and Resources .....                            | 39        |

|                                                                             |           |
|-----------------------------------------------------------------------------|-----------|
| <b>Overarching Recommendations .....</b>                                    | <b>41</b> |
| <b>Implementation Timeline .....</b>                                        | <b>44</b> |
| Phase 1 – Foundational Setup (Late 2025 – 2026) .....                       | 44        |
| Phase 2 – Scaling and Integration (2027 – 2028) .....                       | 46        |
| Phase 3 – Institutionalization and Innovation Leadership (2029 – 2030)..... | 50        |
| <b>Appendices.....</b>                                                      | <b>55</b> |
| <b>Appendix I .....</b>                                                     | <b>55</b> |
| Presentation of Findings .....                                              | 55        |

## **Artificial Intelligence Taskforce Members**

Carl J. Sheperis, Chair  
Troy Vingom, Co-Chair

Members:

|                          |                                      |
|--------------------------|--------------------------------------|
| 1. Bastedo, Scott        | 19. Leonard, Sandra                  |
| 2. Bernstein, Tabetha    | 20. Lentz, Lori                      |
| 3. Brattley, Cheryl L.   | 21. Levine, Lauren                   |
| 4. Cassellia, Leah       | 22. Lynch-Biniek, Amy                |
| 5. Congelio, Bradley     | 23. Martins de Araujo Junior, Robson |
| 6. Driehaus, Tracy       | 24. Miller, Joshua                   |
| 7. Eckel, Elizabeth      | 25. Nave, Ash                        |
| 8. Ehrl, Marco           | 26. Pain, Kittie                     |
| 9. Elts, David           | 27. Pfeiler-Wunder, Amy              |
| 10. Emory, Lukas         | 28. Reasoner, Desiree                |
| 11. Erkul, Muratcan      | 29. Rivkin, Jacob                    |
| 12. Fox, Holly           | 30. Scott, Douglas G                 |
| 13. Frye, Lisa           | 31. Sell, Dakota                     |
| 14. Gangadharan, Ashwini | 32. Shah, Summia                     |
| 15. Gardi, Kerri         | 33. Stafford, Daniel                 |
| 16. Heineman, Richard    | 34. Suwak, Jennifer                  |
| 17. Hyatt, Sally         | 35. Tatarowicz, Dara                 |
| 18. Jones, David A.      | 36. Walther, Reiley                  |

## AI Taskforce Overview

# AI TASKFORCE

Harnessing AI for Student Success & Institutional Excellence

**Our Mission**  
Artificial intelligence is reshaping higher education. KU has a timely opportunity to adopt AI thoughtfully with practical, ethical, and student-centered applications.

**Enhance student success & access**   **Improve operational efficiency**   **Support faculty, staff, & students**

**Six Working Groups**

**Academic Integration & Learning Outcomes**   **AI Awareness & Strategic Communication**

**AI Competency Development**   **Infrastructure & Technology Readiness**

**University Operations & Student Affairs**   **Student Success & Career Readiness**

**Key Themes**

|                                                                                   |                                                                               |                                                                                        |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| <b>AI Literacy for All</b><br>Baseline AI knowledge & ethics training             | <b>Academic Integration</b><br>Faculty resources & support for AI in teaching | <b>Ethics &amp; Governance</b><br>Policies for integrity, data privacy, & fairness     |
| <b>Infrastructure</b><br>Secure tools, data governance, & AI infrastructure needs | <b>Operational Efficiency</b><br>AI to enhance services, not replace staff    | <b>Career Readiness</b><br>AI skills + communication, teamwork, ethics, and creativity |

**High-Level Recommendations**

**Curriculum Integration**   **Faculty/Staff Development**

**Culture & Communication**   **Infrastructure Investment**

**Student Support**   **Ethical Oversight**

**Moving Forward**  
Kutztown University will lead as a regional comprehensive university in the adoption of ethical, student-centered AI

## AI Taskforce Executive Summary

As artificial intelligence (AI) rapidly reshapes higher education, Kutztown University (KU) has a timely opportunity to leverage AI in ways that enhance its mission of student success, access, and institutional excellence. Unlike larger research universities, KU need not aim to develop cutting-edge AI technologies; rather, it can adopt AI thoughtfully to drive operational efficiency, enrich teaching and learning, and better support students and staff within our resource constraints. To that end, the Taskforce on AI was convened in early 2025, bringing together faculty and administrators across campus to develop a university-wide AI initiative. The Taskforce organized six working groups, each focusing on a critical domain of AI integration: (1) Academic Integration and Learning Outcomes, (2) AI Awareness and Strategic Communication, (3) AI Competency Development, (4) Infrastructure and Technology Readiness, (5) University Operations and Student Affairs, and (6) Student Success and Career Readiness. This comprehensive report synthesizes the work of those groups, presenting a cohesive strategy for the university.

**Rationale:** The Taskforce's work is driven by the recognition that AI is not a passing trend but a transformative force in higher education and the workforce. Our graduates will enter jobs where *basic AI understanding and human skills to use it effectively* will be expected. Internally, AI offers tools to improve how we teach, advise, and run campus operations. If approached proactively, AI can be an "enabler of sustainable, student-focused innovation" rather than a threat. However, embracing AI also brings challenges: ensuring ethical use (avoiding bias, protecting privacy), preparing faculty and students to use AI appropriately, and upgrading infrastructure and policies to accommodate these new tools. These challenges underscore the need for a coordinated institutional response.

**Themes and Findings:** Several cross-cutting themes emerged from the six working groups' analyses:

- **Building AI Literacy and Skills:** Every group identified a need to educate our community about AI – its benefits, limitations, and responsible use. Faculty, staff, and students must develop at least a baseline AI literacy so they can confidently and ethically use AI tools relevant to their roles. Currently, knowledge gaps and uncertainties about AI are common, which the Taskforce addresses through training programs, awareness campaigns, and integration of AI into curricula.
- **Academic Integration with Support:** In the curriculum, faculty are eager (and under some pressure) to integrate AI into teaching and assignments, given workforce expectations that graduates know how to use AI. The Academic Integration group emphasized that this must be done carefully and with institutional support. Faculty face heavy workloads; they will need resources, professional development, and recognition to adopt new AI-based pedagogies. The group outlined strategies like grant incentives for AI-related teaching innovation and a peer mentorship network of "AI-fluent" faculty to aid others.
- **AI Policy, Ethics, and Governance:** A unanimous finding was that robust policy frameworks and oversight are essential. AI blurs traditional lines in areas like academic integrity (e.g. use of AI in writing assignments), data privacy (AI tools often handle sensitive data), and decision-making bias (AI used in admissions or hiring). The Infrastructure/Tech Readiness group's review confirmed KU has a solid IT foundation but needs stronger data governance and security controls before scaling up AI. They and the Ops/Student Affairs group recommend establishing cross-functional governance structures (e.g. an AI ethics committee) to set guidelines and

evaluate AI use cases. Ethical use – ensuring transparency, fairness, and human oversight – is a guiding theme in all recommendations.

- **Infrastructure and Tools:** For AI to flourish at KU, we must invest in the technological infrastructure and tools that enable it. This includes both computing resources (software, hardware, data systems) and security measures. The Tech Readiness group implemented initial “guardrails” such as an AI Acceptable Use Policy and data sensitivity labeling to protect information. Looking ahead, they recommend creating an “AI Innovation Hub” – a secure environment where students, faculty, and staff can experiment with AI technologies for learning and research. Additionally, expanding campus access to AI software (through licensing or cloud services) is critical so that hands-on experience with AI becomes part of the KU experience.
- **Operational Efficiency and Student Support:** The University Operations/Student Affairs group found that many universities are already using AI to streamline services – from predictive maintenance in facilities to chatbots that answer student questions 24/7. These applications can save time and improve service quality if implemented responsibly. KU’s opportunity is to deploy such AI solutions to augment our staff (not replace them), targeting areas where our staff are stretched thin. For example, an admissions chatbot could handle routine inquiries, freeing staff to focus on high-touch recruitment efforts. Importantly, any efficiency gains should be balanced with KU’s human-centered values: AI should enhance personalized support for students, not create a cold or automated campus experience.
- **Student Success and Career Readiness:** The Student Success/Career group highlighted that our students must be prepared for an AI-infused workforce in two ways. First, they need direct AI knowledge and skills (e.g. knowing how to use AI tools in their field, how to critically evaluate AI outputs, and how to mention AI proficiency on a resume). Second, because AI is accelerating automation of routine tasks, students’ human skills – like communication, teamwork, ethical judgment, and emotional intelligence – become even more crucial to their success. Employers will value graduates who can *work alongside AI* effectively, exercising human creativity and empathy in tandem with AI tools. KU’s strategy thus pairs technical AI training with a renewed emphasis on soft-skill development in curricula and student programming.

**High-Level Recommendations:** In light of these findings, the Taskforce proposes a coordinated set of actions to position KU as a leader among regional comprehensive universities in embracing AI responsibly. At a high level, we recommend:

- **Integrating AI into Teaching and Learning:** Update curricula and learning outcomes to incorporate AI competencies and digital literacy across disciplines. Provide faculty with model guidelines for AI use in coursework (when to encourage or limit AI assistance) and share examples of effective AI-related assignments. In parallel, offer students new learning opportunities – such as a first-year seminar on AI basics or micro-credentials like “*AI Essentials for College Students*” – ensuring every KU graduate achieves baseline AI literacy.
- **Comprehensive AI Training for Faculty and Staff:** Launch an AI professional development program to build faculty and staff capacity. This includes workshops, online modules, and certificate programs covering from foundational AI concepts to advanced applications and ethics. Establish incentives (certificates, digital badges, recognition in annual evaluations) to encourage participation. The goal is a workforce that is “AI-aware and AI-confident,” able to utilize AI tools in their roles and guide students in doing the same.

- **Robust Communication and Culture-Building:** Implement an ongoing AI awareness campaign to demystify AI and foster a positive, informed campus culture. This involves regular communications highlighting AI success stories at KU, open forums for discussing concerns, and clearly articulated messages about how AI aligns with our educational mission. By addressing fears and emphasizing a growth mindset (“adapting together, advancing together”), KU will build stakeholder trust and enthusiasm for AI initiatives.
- **Investing in Infrastructure and Data Governance:** Allocate targeted resources to upgrade technology and guard against risks. This includes funding for an AI Innovation Hub (a secure sandbox environment), purchasing or licensing vetted AI tools for campus-wide use, and strengthening data protections (monitoring systems to prevent unauthorized data sharing via AI, strict access controls). These investments ensure we can scale AI usage safely, protecting sensitive information and complying with regulations (e.g., FERPA) as we innovate.
- **Enhancing Student Support and Success with AI:** Deploy AI in student services to provide more personalized and proactive support. Examples include AI-driven early alerts for at-risk students (using predictive analytics on academic and engagement data), adaptive learning or tutoring systems that supplement classroom instruction, and AI-assisted career services (such as resume analyzers and interview chatbots) to better prepare students for job markets. Each deployment should be coupled with human oversight (e.g., advisors acting on AI alerts) to ensure empathy and judgment remain central.
- **Continuous Ethical Oversight and Alignment with Mission:** All AI efforts will be guided by ethical principles and KU’s core values. We will establish a cross-functional oversight committee to review AI implementations for fairness, transparency, and alignment with our mission of access, affordability, and student-centered education. This committee (an extension of the Taskforce or a new body) will regularly update policy, address unintended consequences, and include diverse voices (faculty, IT, students, compliance officers) to maintain a 360-degree perspective on AI’s impact.

Each of the following sections provides more detail on the six working group areas, including strategic priorities, key recommendations, implementation strategies, and needed resources. The report concludes with overarching recommendations that cut across all groups and a phased implementation timeline (2025–2030) that maps out how and when major initiatives will unfold. The tone and proposals are crafted for consideration by university leadership – cabinet members and trustees – who will ultimately authorize and champion this initiative. By taking the steps outlined, Kutztown University can proactively adapt to the AI era, ensuring we harness these technologies to enhance our educational environment while upholding our commitment to student success and ethical leadership.

## KU AI Taskforce Report

### Introduction

As artificial intelligence technologies rapidly transform higher education and the broader workforce, Kutztown University stands at a pivotal moment to embrace innovation while staying true to our foundational mission of providing accessible, student-centered education. The KU AI Taskforce was established to develop a comprehensive strategy for integrating artificial intelligence across all aspects of university operations—from academic instruction and student services to administrative processes and career preparation.

This report represents the culmination of extensive research, stakeholder engagement, and collaborative planning across six specialized working groups: Infrastructure and Technology Readiness, Academic Integration and Learning Outcomes, University Operations and Student Affairs, Awareness and Strategic Communication, Competency Development, and Student Success and Career Readiness. Together, these groups have examined current capabilities, identified opportunities for enhancement, and developed actionable recommendations that position Kutztown University as a leader in responsible AI adoption among regional comprehensive universities.

Our approach recognizes that successful AI integration requires more than technological implementation—it demands thoughtful consideration of human impact, ethical implications, and institutional values. The recommendations contained herein prioritize human welfare, maintain academic integrity, and ensure that AI serves to augment rather than replace the meaningful connections and personalized attention that define the KU experience. Through careful planning and community-wide engagement, we can harness the transformative potential of AI while preserving what makes our institution distinctive and valuable to the students and communities we serve.

### Academic Integration and Learning Outcomes

#### Summary

The Academic Integration and Learning Outcomes working group focused on weaving AI into KU's academic programs in a pedagogically sound way. Recognizing that AI competency will be vital for graduates in nearly every field, the group concentrated on **five** key areas for recommendations: (1) Academic Background (building understanding of AI's role), (2) AI and Workforce Development, (3) Resources for faculty/students, (4) Course and Program Integration of AI, and (5) Support and Recognition for faculty. Importantly, while "*learning outcomes*" is in the group's name, they determined that formal changes to university-wide Student Learning Outcomes should proceed through established governance (e.g., the General Education committee) rather than the Taskforce. Instead, they suggest forming a GEPAC (General Education Program & Assessment Committee) subcommittee to develop student learning outcomes or guidelines around appropriate AI use in coursework. Overall, this group's recommendations aim to infuse AI into teaching and curriculum in meaningful ways, with ample support for faculty so that AI becomes a tool for learning enhancement rather than a source of confusion or academic misconduct.

## Strategic Priorities

- **Contextualize AI in Education:** Provide the academic community with a clear rationale and framework for AI integration. Faculty, staff, and students need to understand *why* learning to use AI is beneficial and *when* it is appropriate or not in an academic context. This includes linking AI use to workforce demands (so students see its career relevance) and enumerating scenarios where AI can enhance learning versus where human critical thinking is paramount. Establishing this shared background ensures everyone approaches AI with a similar baseline understanding of its value and limitations.
- **Incorporate AI Across the Curriculum:** Encourage each department and program to integrate AI literacy and skills into their curricula. Rather than a one-size policy, integration should be discipline-specific – every field should determine appropriate “*AI Literacy Standards*” and outcomes for its students. For example, Computer Science might include building simple AI models, whereas English might focus on using AI tools for research or grammar assistance critically. A priority is to develop processes (with time and funding) that help departments update courses and even create new courses or modules on AI applications in their domain.
- **Provide Practical Resources & Training:** To enable academic integration, the university must supply practical resources and faculty development. Priorities include creating a centralized AI resources webpage for faculty with sample syllabus statements, policy guidelines, and curated lists of vetted AI tools. Additionally, offer training (possibly through the Center for Excellence in Learning, or CEL) on “*how to use AI in teaching*” – from assignment design that leverages AI to methods for detecting AI-generated work. By equipping educators with knowledge and tools, we ensure AI is used effectively and ethically in classrooms.
- **Recognize and Support Faculty Innovation:** A recurring theme is that faculty are already stretched; integrating AI (which may require redesigning assignments, learning new software, etc.) adds to their load. Thus, incentivizing and recognizing faculty efforts is a strategic priority. This might involve grant programs (e.g., mini grants for AI curriculum development), workload adjustments for those spearheading major AI initiatives, and ensuring that contributions to AI pedagogy count toward merit, tenure, or promotion. Cultivating a few faculty champions – potentially through an “*AI Faculty Fellows*” initiative or similar – who receive support to become campus experts is also key.

## Key Recommendations

- **Articulate “Why and When” Guidelines:** Develop and disseminate two clear statements or guides for the KU community: one explaining *why learning to use AI benefits students* (e.g., improving critical thinking, preparing for AI-augmented jobs), and another outlining *when to encourage or discourage AI use* in academics. These guides would include concrete examples: instances where AI can be a helpful learning aid (such as brainstorming ideas or analyzing large data sets), and instances where it would undermine learning (such as using AI to generate a whole essay). They should also frankly address drawbacks of AI (like the potential for errors or shallow understanding) and emphasize that both students and faculty must be agile as AI technology evolves. Together, these statements set an institution-wide tone for AI’s role in learning.
- **AI & Workforce Speaker Series:** Launch a “*AI and the Future of Work*” speaker series to help faculty and students connect academic AI use to real-world career skills. Through this series,

industry professionals and alumni from various disciplines can share how AI is used in their fields and what competencies employers expect. The working group specifically suggests funding discipline-specific AI guest speakers – for example, an artist using AI in digital media for the art department, or a business analyst using AI in finance for the COB. Such targeted talks, supported by a small grant pool that departments can tap, will contextualize AI for students’ future careers and inspire faculty to incorporate those insights into curricula.

- **Create an AI Resource Hub:** Develop a one-stop AI resource hub (webpage) on the Provost’s or CEL website to support faculty in integrating AI. This hub would feature: (a) Sample syllabus language on AI expectations (gathering examples from leading universities); (b) A vetted list of AI tools useful for education, maintained in collaboration with IT and the library (and updated as tools emerge); (c) Guidance on AI detection tools and their limitations (so faculty understand the caveats if they choose to use tools to detect AI-generated content); (d) Suggestions for AI-inclusive teaching strategies (like assignment ideas that incorporate AI, or alternatives to assessment that discourage AI misuse). The Iowa University “AI in the Classroom” site is cited as a helpful model. This living repository will make it easier for faculty to get on board with AI by lowering the research barrier and sharing collective knowledge.
- **Department-Level AI Integration Plans:** Ask each academic department to hold discussions on the benefits and challenges of AI in their discipline and to identify at least one way to integrate AI into their programs. To facilitate this, the Taskforce recommends providing departments with time and possibly funding (e.g., a small stipend or course release for a faculty member leading the effort). Key outputs could be: discipline-specific *AI literacy objectives* (what do we want our majors to know about AI by graduation?), a set of courses targeted for AI-related module insertion, and any needed new course proposals (for instance, “AI Applications in Biology” or a cross-listed “Ethics of AI” seminar). Sharing templates or examples from other institutions (some have tiered approaches to AI in curriculum) can guide these plans. This decentralized but supported approach ensures relevance – the English department’s approach will differ from Computer Science’s – yet all align with the university’s broader strategy.
- **Ethical and Effective Use Guidelines:** Develop academic guidelines or principles for AI use in coursework, focusing on ethics and effectiveness. These would be a set of recommendations (potentially endorsed by the Provost and Faculty Senate) that cover topics such as: requiring students to disclose when they use AI in assignments and in what capacity, discussions of academic integrity relating to AI (what counts as unauthorized assistance vs. learning aid), and incorporation of AI ethics into class discussions. For example, the guidelines might say: if AI is used to draft an essay, the student must credit that and reflect on the AI’s input; or an instructor might explicitly allow AI for research but not for writing the final paper, etc. Having a unified set of expectations will help avoid confusion and ensure fairness across courses. These guidelines would also encourage faculty to include components like an “*AI reflection*” – where students describe how they used (or chose not to use) AI and what they learned – to reinforce metacognitive skills.

## Implementation Strategies

- **Faculty Development and Training:** Initiate targeted faculty development sessions on AI integration. For instance, the Center for Engagement and Learning (CEL) could run a short course for instructors analogous to distance education training, but focused on “*Using AI in Teaching*”. Modules might include how to design assignments that incorporate AI usage (or

deliberately preclude it to test certain skills), how to use AI tools like coding assistants or research assistants in class, and how to adjust assessment methods in the AI era. Additionally, consider a faculty AI fellows program where a handful of faculty members are given support (perhaps a summer stipend or reduced course load) to develop expertise in AI pedagogy and then mentor colleagues. These “early implementers,” similar to what KU did for early online learning adopters, can help scale knowledge and assuage peers’ concerns by sharing their experiences.

- **Showcase and Share Practices:** Create avenues to showcase innovative AI-based teaching practices, which will build momentum and community. This could be a regular newsletter feature, a Teaching & Learning Center blog, or an annual symposium where faculty present short demos of AI-related assignments or projects. Even a simple “AI in the Classroom” brown-bag series where faculty present what they tried (successes or failures) can be valuable. Not only do these forums spread good ideas, they also publicly recognize faculty who are making strides, feeding into the support/recognition priority.
- **Curriculum & Syllabus Updates:** Encourage faculty (perhaps through department chairs or dean’s guidance) to update syllabi to explicitly address AI. For the upcoming academic term, suggest every instructor include a statement on their syllabus about AI tool use in that course – whether it’s encouraged, allowed with citation, or prohibited for certain tasks. Provide sample language to make this easier (as noted in the resource hub recommendation). Having this in syllabi from day one sets clear expectations and normalizes conversations about AI in academics. Over time, as departments formalize AI literacy goals, these will translate into actual curriculum updates (e.g., adding an AI-related assignment or outcome in program requirements).
- **Assessment Adjustments:** To maintain academic rigor, promote assessment strategies less vulnerable to inappropriate AI use. The group suggests options like more in-class assessments where possible (reducing opportunities for unseen AI help) and focusing assignments on very current events or class-specific discussions that AI models might not have context for. They also advocate for assignments that require personal reflection or process documentation – for instance, having students submit an appendix explaining how they solved a problem and whether AI was used. Training and resources can help faculty implement these strategies, which in turn can alleviate concerns about academic integrity in the age of AI.
- **Feedback and Iteration:** Treat the academic integration process as iterative. Gather feedback from both faculty and students on what’s working or not. For example, survey faculty who pilot AI assignments about student outcomes and difficulties, or host focus groups with students on their perceptions of AI-related coursework. Use this input to update the resource hub, training, and policies annually. Also, keep an eye on external developments – other universities are rapidly publishing guides (the University of Iowa site being one example) – and integrate relevant best practices that emerge externally. Academic integration will not be a one-time project, but an evolving effort aligned with the fast pace of AI advancement.

## Support and Resources

- **Grant Funding and Incentives:** Establish a small grants program (or leverage existing teaching innovation grants) specifically for AI integration projects. For example, faculty could apply for a \$1,000 mini-grant to redesign a course to incorporate AI elements, or a department might get funding to hold a summer curriculum workshop on AI in their field. These funds signal

institutional priority and help jump-start innovation. Similarly, consider recognizing AI integration in the faculty annual review process – e.g., adding it as a category under teaching effectiveness or professional development – so that time spent learning or creating AI-enhanced pedagogy is “counted” in workload expectations.

- **Mentorship Network:** Identify faculty early adopters who can serve as AI mentors to others. This could be informal (simply an internal list of “who’s willing to help with questions about AI in subject X”) or formal (an official program under CEL). Provide these mentors with advanced training or conference opportunities so they stay ahead of the curve. Likewise, support cross-departmental learning communities on AI in education – small groups that meet to discuss and troubleshoot their AI teaching experiences. This structure creates a support system at the grassroots level.
- **Dedicated Staff/Center Support:** KU could consider creating a role (or expanding an existing CEL or IT pedagogy role) for an “AI in Curriculum Specialist.” This staff member would coordinate resource curation, answer faculty questions, and work one-on-one to help adapt courses. The working group even floated the idea of a dedicated AI Center or a branch of CEL focused on AI, led by a faculty member on an Alternative Work Assignment. If feasible, such a center could centralize efforts and maintain momentum as the initiative grows. At minimum, clear points of contact (e.g., an AI Taskforce continuation team) should be established so faculty know where to turn for help.
- **Technical Resources:** Ensure faculty and students have access to the necessary technology to experiment with AI. This might include increasing computer lab capabilities for AI software, providing access to cloud-based AI platforms, or making departmental purchases of discipline-specific AI tools. The resource hub should also extend to student resources – e.g., linking students to AI tools they can freely use for learning (with disclaimers about ethical use). Additionally, continue to invest in AI detection or plagiarism-checking tools as an option for faculty, but with guidance on their proper use and limitations.
- **Recognition:** Finally, celebrate successes in academic integration to reinforce a supportive culture. Whether through awards (like a teaching award for AI innovation), shout-outs at faculty meetings, or featuring success stories on KU’s website, acknowledging the faculty and departments who pioneer AI integration will motivate others. It sends the message that incorporating AI into academics is valued institutional work – which is essential for sustained adoption.

## AI Awareness and Strategic Communication

### Summary

The AI Awareness and Strategic Communication working group was tasked with ensuring that the *human dimension* of KU's AI initiative is addressed: people need to understand, buy into, and feel comfortable with AI adoption. This group developed a comprehensive Awareness & Communication Plan under the motto "*Adapting Together. Advancing Together.*". The plan's overarching goal is to educate and engage all stakeholder groups – from students and faculty to staff, administrators, alumni, and even external partners – about KU's AI efforts in a way that builds trust and enthusiasm. Key elements of the plan include addressing stakeholder knowledge gaps and concerns, communicating transparently about AI uses and policies, and fostering a sense of empowerment so that individuals feel capable of learning and using AI. The group emphasizes a “low-barrier, inclusive” approach – meeting people where they are in terms of AI understanding, using accessible language, and making AI seem approachable and relevant rather than intimidating. Their step-by-step strategy involves gathering input (focus groups), crafting targeted messages, and delivering those messages via multiple channels over time to sustain engagement.

### Strategic Priorities

- **Understand the Audience – Listen First:** A priority of the awareness campaign is to truly understand the perspectives of different stakeholders regarding AI. This means identifying what people *know*, what they *worry about*, what *excites* them, and what they *need* in order to embrace AI. The plan calls for conducting focus groups with key stakeholder segments – e.g., undergraduate students, graduate students, faculty (perhaps broken down by discipline or career stage), various staff units (IT, HR, Student Affairs, etc.), administrators, and even alumni and industry partners. Gathering this qualitative data ensures that subsequent communications address real concerns and interests, making the outreach more effective and credible.
- **Craft Targeted, Transparent Messaging:** Using the input collected, the group will develop clear, targeted messages tailored to each audience's concerns and knowledge level. The idea of Message Maps is central: for each stakeholder group, outline the key points we need to convey (for instance, for faculty: “AI can enhance teaching, not undermine it; KU will provide support; here's how to handle academic integrity issues”). Messages will emphasize transparency – being upfront about what AI is being implemented and why – and empowerment – highlighting how stakeholders can engage with AI positively. The aim is to combat misinformation or fear by proactively providing facts, examples, and guidance that resonate with each group.
- **Multi-Channel Communication & Engagement:** The plan prioritizes reaching stakeholders through multiple channels and formats to maximize reach and reinforce messages. No single communication method will hit everyone, so the campaign will include a blend of: digital communications (email newsletters, social media posts, a dedicated website section), in-person events (workshops, town halls, poster sessions), print materials (infographics, quick-start guides), and peer-to-peer outreach (identifying “AI champions” in various units). This multi-channel approach ensures that whether someone prefers to read, watch, discuss, or browse, they will encounter consistent messaging about AI at KU. It also allows for repetition of core themes in different contexts, which aids understanding and retention.
- **Foster a Positive, Inclusive Tone:** A critical priority is setting a constructive and inclusive tone about AI on campus. The group intentionally uses language like “*Adapting Together*” to signal

that *everyone* – regardless of technical background – can participate in KU’s AI journey. The campaign will highlight *success stories and opportunities* (“AI helped this student with a disability access course content better” or “this staff member saved hours using an AI tool”), to inspire optimism. It also doesn’t shy away from concerns; rather, it addresses them openly (for example, providing fact-based assurances about common AI fears such as job loss or academic cheating, and the safeguards KU is implementing). By making AI accessible and relevant – connecting it to people’s roles and goals – the communication strategy seeks to build genuine buy-in rather than top-down compliance.

### Key Recommendations

- **Conduct Stakeholder Focus Groups:** Launch the campaign by holding a series of focus groups or listening sessions across stakeholder categories. For example, organize separate focus groups for undergraduate students, graduate students, faculty (perhaps divided by colleges), non-teaching staff, and administrators. In these sessions, use semi-structured questions to probe participants’ knowledge of AI (Do they know of any AI initiatives at KU? Have they used AI tools like ChatGPT?); concerns (Are they worried about AI in the classroom or workplace? Do they fear negative impacts?); opportunities/interest (How do they think AI could benefit their learning or work?); and needs (What support or information would they want from the university regarding AI?). These discussions should be facilitated in a neutral, open manner and, importantly, serve also as recruitment for “change agents” – participants who show interest and legitimacy could become ambassadors for the cause. The output will be a summary of key themes and direct quotes which will inform all subsequent messaging.
- **Develop Message Maps for Each Group:** Using focus group insights, create Message Maps – essentially tailored communication plans – for each stakeholder group. A Message Map outlines: the audience’s main knowledge gaps or concerns; the Key Messages we need to convey to address those; supporting facts or examples (ideally referencing success at other institutions or pilot results to lend credibility); and Actionable steps to empower the audience. For instance, a message map for faculty might identify a concern like “Will AI diminish academic rigor?”; a key message could be “AI, used properly, can enhance teaching and learning rather than replace it (‘AI + You > You’ concept)”, supported by examples of improved outcomes from other universities; actionable steps might include “Attend a KU workshop on teaching with AI” or “Review KU’s AI classroom guidelines”. Similarly, a map for students might tackle “fear of AI in assessments” with messages about how AI can personalize learning and how KU will ensure fair use, and actions like “try an AI tutoring tool provided by KU.” These message maps ensure consistency and relevance in communications. They are *living documents* – feedback from ongoing communications will allow updating the maps.
- **Recruit and Empower AI Champions:** Identify **AI Opinion Leaders or Change Agents** across campus to personalize and spread the message. These could be well-respected faculty who are enthusiastic about AI, student leaders (like the Student Body President or club leaders) who are tech-savvy, or staff who have innovated with AI in their workflow. Conversely, also recognize “AI skeptics” (or deinfluencers) – individuals known to be critical of AI – and engage them constructively. The plan recommends recruiting willing change agents during the focus groups phase and then convening them for a briefing/training. Equip these champions with communication toolkits – talking points aligned with the message maps, presentation slides or handouts they can use in their department meetings or student orgs, and FAQs to address common questions. By having peers (rather than just administrators) voicing support for AI

initiatives, the messaging gains credibility. Additionally, involving skeptics by asking them to be advisors or to voice their concerns in forums can help ensure the campaign addresses real issues and can potentially turn skeptics into fair critics who acknowledge improvements.

- **Implement a Multi-Channel Communication Campaign:** Roll out a sustained communications campaign using multiple platforms and event formats to disseminate the crafted messages and keep AI in the campus conversation. Key components will include:
  - **Regular Email Newsletters or Briefs:** Perhaps a monthly “AI @ KU Update” emailed to all faculty/staff and a student-friendly version for students. These would share quick reads: e.g., a spotlight on an AI tool and how it’s being used on campus, a profile of a person (student or faculty) engaging with AI, upcoming AI-related events, and myth-busting facts.
  - **Dedicated Web Presence:** Establish an AI Initiative webpage/hub on KU’s site (possibly hosted by the Provost or Taskforce page) that centralizes information: statements of purpose, timelines, *AI policies and guidelines*, resources (linking to the academic resource hub from the other group), and an interactive FAQ. This site should be kept updated as a go-to reference.
  - **Social Media and Storytelling:** Leverage KU’s social media channels (Facebook, Twitter, Instagram, LinkedIn) for short, engaging content. For example, post “*Did You Know?*” AI factoids relevant to KU, 60-second video testimonials (a student saying “I used an AI-based tool to study, and it helped me improve my grade...”), or infographics about AI’s impact. Social media can create buzz and direct people to deeper content on the website or events.
  - **Interactive Events:** Host a variety of events such as town hall meetings where leadership answers questions about AI; panel discussions with faculty trying AI in teaching; student forums to discuss academic integrity and AI; and possibly an *AI fair* or *AI Day* with demonstrations of tools. An “*AI Awareness Week*” could bundle some of these activities (e.g., guest speaker panel, a poster session of student AI projects, an AI innovation challenge or hackathon, etc.).
  - **Workshops and Training Sessions:** Coordinate with the competency development group to ensure workshops are not just skills-based but also serve awareness goals. For instance, a beginner’s workshop titled “What the AI Revolution Means for Higher Ed” open to all can both teach and build buy-in.
  - **Printed Materials and Signage:** Create easy-to-digest materials like a one-page guide or brochure “AI at Kutztown: What You Need to Know,” and distribute at orientation, department meetings, etc. Use campus digital signage or bulletin boards for key slogans or statistics (e.g., rotating slides that show quick tips or quotes from the message maps).
  - **Feedback Loop and Adaptive Messaging:** Implement a mechanism to continuously gather feedback on the communication efforts. This might be as simple as a feedback form on the AI website or quick polls after events. Monitor engagement metrics: open rates on emails, attendance at events, hits on the AI webpage, and even sentiment on social media. Use this data to refine the communication strategy in real time. For example, if students respond positively to short videos but aren’t reading long emails, shift more content into video format. If faculty still express specific misconceptions, issue a special communication addressing that. The

communication plan should be treated as dynamic – adjusting message focus and methods as campus awareness and AI adoption evolve.

## Implementation Strategies

- **Leverage Existing Channels & Rhythms:** Rather than starting from scratch, piggyback on existing communication structures at KU to incorporate AI messaging. For instance, ask to include an “AI Corner” in the Provost’s monthly newsletter to faculty, or a segment in orientation sessions for new students and employees. Work with University Relations to integrate AI talking points into their press releases or stories about KU (e.g., if KU gets a grant or does a project related to AI, highlight it in media). Embedding AI content into standing meetings (like a brief AI update in each College faculty meeting or Student Government meeting periodically) can normalize the topic and reach people in familiar settings.
- **Visible Leadership Involvement:** Have university leadership (President, Provost, Deans) visibly champion the AI initiative in communications. For example, the President might send the inaugural announcement about the AI Taskforce’s plans to all campus, underscoring its importance. Leadership can also drop by AI events or mention AI progress in addresses. This top-level emphasis often legitimizes the initiative and signals that this is a long-term, priority effort (not just a tech fad). It can also reassure stakeholders that resources and support will follow the rhetoric, which increases trust.
- **Inclusive Language and Design:** Ensure all communication uses inclusive, non-technical language unless addressing a highly technical audience. Avoid jargon where possible, or if a technical term (like “*machine learning*” or “*data bias*”) is needed, define it briefly in lay terms. The tone should be friendly and encouraging, positioning AI as a tool anyone can learn (“AI for *all* majors, all staff levels, all backgrounds”). Additionally, design materials to be accessible: use approachable visuals (icons of robots or lightbulbs, diverse people using tech) and, where applicable, provide multilingual versions or at least consider whether key pieces should be in Spanish as well for families or community members.
- **Highlight Safeguards and Policies:** Part of awareness is making sure people know that KU is taking precautions. In communications, explicitly mention the guardrails: e.g., “KU has established data privacy guidelines for AI” or “We are forming an AI ethics committee to oversee these changes”. When the Acceptable Use Policy for AI is ready, publicize it and explain in plain terms what it means (e.g., “the policy ensures no one puts personal student information into external AI tools without permission”). This helps address the fear of the unknown by showing that AI use at KU will be managed responsibly.
- **Monitor Sentiment and Address Concerns:** Use social listening and informal feedback to gauge campus sentiment over time. If certain myths or negative narratives pop up (for instance, “AI will take away our jobs” or “the university will use AI to monitor us”), address them head-on. Maybe publish a “Myth vs Fact” piece or have a Q&A section in the newsletter that tackles a hard question each month. By confronting controversies with facts and empathy (acknowledging valid feelings while clarifying the reality), the campaign can prevent misinformation from spreading. It’s better for the university to be the source of truth on AI developments at KU.
- **Celebrate Milestones Publicly:** As the initiative progresses, use communications to celebrate key milestones and thank the community. For example, “Over 100 faculty have completed AI

training – kudos to our early adopters!” or “Our AI pilot in advising helped increase outreach to struggling students – here’s a quick story of impact.” This not only provides positive reinforcement but also concretely shows the community what the AI initiative is accomplishing. Storytelling around early successes (even small ones, like a testimonial that “AI saved me 2 hours on X task”) can make AI benefits tangible to the undecided.

## Support and Resources

- **Staffing and Coordination:** While much of the content generation might come from taskforce members or volunteers, it’s important to have dedicated coordination for this campaign. Ideally, assign a communications professional (or a small team) to orchestrate the AI awareness plan. This could be someone in University Relations or Marketing who partners with the Taskforce. They would manage scheduling messages, ensuring branding consistency, and handling social media posts, etc. If needed, a part-time graduate assistant or intern could assist with content creation (e.g., a Communications student intern could help produce videos or graphics specific to AI messaging).
- **Budget for Materials and Events:** Allocate a modest budget for communication materials and events. For instance, funds for printing high-quality brochures or flyers, producing short video segments (if external videography help is needed), branded swag for an AI event (even small things like “KU AI” stickers or pens for awareness week can draw interest), and refreshments for focus groups or town halls. If bringing external speakers for an AI panel or talk (which doubles as awareness and education), budget for honoraria/travel. The working group’s plan likely can be executed cost-effectively by leveraging internal resources, but some dedicated funding (even a few thousand dollars) will greatly facilitate professional-quality outreach.
- **Tools and Platforms:** Ensure access to the necessary communication platforms. This might include possibly surveying software for focus groups sign-ups or follow-up, social media management tools to schedule posts, an email marketing tool if needed to track engagement rates for the newsletters, and web development support for the AI initiative site. The IT web team might need to be involved in setting up a new site section or interactive elements (like an FAQ chatbot or forum for questions about AI). Additionally, leverage free or existing tools – e.g., use the LMS to post announcements to students, or existing listservs for different groups.
- **Training for Change Agents:** Provide the recruited AI champions with a short orientation or training so they feel comfortable communicating about AI. This could be a one-time workshop where the working group goes over the message maps, answers the champions’ own questions (so they are well-informed), and perhaps gives tips on handling tough questions. Equipping them with a simple slide deck or FAQ document will empower these volunteers. It’s also a good idea to create an email distribution or chat group for the champions to keep them updated and to allow sharing of experiences (“I talked about AI in our staff meeting and got these questions, how would you respond?” etc.).
- **Continuous Documentation:** Maintain documentation of the communication plan and repository of content. As different mediums roll out (emails, social posts, etc.), archive these so the team can track what’s been communicated. This prevents duplication and ensures newcomers to the project can catch up. It also helps in assessing what messaging might need reinforcement or hasn’t yet been covered.

With a strong, well-resourced communication effort, KU will cultivate an informed community that views AI not with trepidation, but with cautious optimism and curiosity. The outcome will be a campus culture where stakeholders feel they are active partners in the AI initiative – their voices heard and their needs addressed – truly “adapting together, advancing together.”

## AI Competency Development

### Summary

The AI Competency Development working group concentrated on the human capital development aspect of the initiative: how to ensure that KU's students, faculty, and staff acquire the knowledge and skills to effectively use AI. Their mission statement is *"Design and implement comprehensive AI literacy and competency development programs."* This entails creating a structured approach to AI education that spans basic literacy to advanced application, tailored to different roles within the university. The group produced a detailed plan outlining learning outcomes and performance indicators for AI competencies, adopting the SMART framework to make them Specific, Measurable, Achievable, Relevant, and Time-bound. They identified six core AI competency domains – ranging from foundational concepts to ethical considerations – as the pillars of AI literacy at KU. Beyond defining what competencies to develop, the group also proposed implementation mechanisms such as AI training pathways for faculty, staff, and students, an "AI Ambassador" program to leverage peer mentorship, and AI certification programs or badges to recognize achievement. In short, this section of the initiative provides the educational blueprint to ensure our community is *AI-competent, not just AI-aware* – moving individuals from curiosity to confidence in using AI (hence their internal tagline *"Curious, Competent, Confident!"*).

### Strategic Priorities

- **Define AI Competencies and Learning Outcomes:** Establish a clear set of AI competency domains and learning outcomes that KU expects students (and by extension faculty/staff learners) to achieve. The six domains identified are: (1) AI Literacy (understanding key concepts/terminology), (2) Critical Evaluation of AI (ability to assess AI outputs and recognize bias), (3) AI Tool Proficiency (practical skills in using AI applications), (4) Data Literacy (understanding data quality and its impact on AI), (5) Ethical AI Engagement (applying ethical frameworks and addressing AI's societal impacts), and (6) Discipline-Specific AI Applications (knowing how AI applies in one's field). For each domain, specific performance indicators have been developed (e.g., *"Successfully use at least three different AI applications relevant to academic/professional contexts"* under tool proficiency) to guide curriculum and assessment. This comprehensive competency framework will guide what content is taught in AI training programs and how success is measured.
- **Role-Based Training Pathways:** Recognize that different groups (faculty, staff, students) have different training needs and starting points, and create customized learning pathways for each. For example, a faculty pathway might focus on incorporating AI into teaching and research (with topics like prompt engineering for class activities, AI data analysis for research, etc.), whereas a student pathway might start more basically with what AI is and how to use common AI tools for study or creativity. A staff pathway could emphasize using AI to improve work processes and professional development in one's job role. The group's plan suggests outlining progressive levels (basic, intermediate, advanced) for each audience so individuals can build competence over time. The training should be scaffolded – for instance, students might have an "AI 101" module in their first year, then optional deeper dives or interdisciplinary AI projects in later years.
- **Peer Leadership and Support (AI Ambassadors & Mentors):** To supplement formal training, the group prioritizes a peer-based support structure where enthusiastic and knowledgeable individuals help others. The "AI Ambassador" program is a key recommendation: select

students, faculty, and staff who are passionate about AI to serve as ambassadors who will share knowledge from “a multitude of perspectives” and provide peer assistance. Ambassadors would be trained to a higher proficiency and then act as *go-to resource persons* or workshop facilitators in their departments or residence halls, etc. This leverages internal talent and creates a multiplier effect for spreading AI competence. Similarly, an AI Skill Mentorship mechanism is proposed, connecting less experienced users with experienced mentors (which might include those ambassadors, plus alumni or industry volunteers) for guidance on projects and skill development. By fostering mentoring relationships, competency development becomes hands-on and personalized, accelerating learning beyond what formal classes alone can achieve.

- **Recognition and Credentialing:** The group stresses the importance of recognizing and certifying AI skills so that learners are motivated and can showcase their abilities. This includes creating digital badges or certificates for completing AI training programs. For instance, an individual might earn a “KU AI Literacy Certificate (Beginner Level)” and then an “AI Integration Certificate (Advanced Level)” as they progress. These credentials can be added to resumes or LinkedIn profiles, aiding students in job searches and staff/faculty in demonstrating professional development. Additionally, formalizing these credentials ensures consistency in what it means to be “AI competent” at KU. In the long run, the group even envisions an AI micro-credential or certification program open to all community members, possibly built in partnership with existing online courses or through an in-house series of workshops culminating in an assessment. Recognizing achievements through badges, certificates, or even an academic credit-bearing certificate program will reinforce the value of AI competency and provide goals for participants to strive toward. It is important to note that KU Advance, the workforce development office for Kutztown University is moving currently moving this recommendation forward by offering more than 300 courses related to AI through Coursera.

## Key Recommendations

- **Integrate AI Competencies into Curriculum and Co-curriculum:** Use the defined AI competencies as a blueprint to embed AI learning outcomes into academic programs and training initiatives. For example, within academic departments, map which courses could cover which AI competency domain (perhaps general education courses address AI Literacy and Ethical AI broadly, while major courses address discipline-specific AI use). The working group suggests incorporating these performance indicators into assessment rubrics and assignments – meaning, for instance, a business course might explicitly assess students on their ability to use a simple AI tool for data analysis (aligning with AI Tool Proficiency and Data Literacy). On the co-curricular side, align programs like information literacy instruction, the Career Center’s workshops, or student leadership training with AI competencies (e.g., have the library include AI literacy in its info sessions, or career services include a module on AI in job searching). This integration ensures AI learning isn’t isolated in special workshops but is reinforced throughout the student experience.
- **Establish Tiered AI Training Programs:** Develop a structured AI training curriculum with multiple levels – likely Beginner, Intermediate, Advanced – that all stakeholders can progress through. At the Beginner level, topics would include fundamental AI concepts and terminology, basic applications and ethics (e.g., what is AI, where do we encounter it, what are its limits). The Intermediate level might delve into hands-on use of AI tools in one’s field, integration strategies (like how to use AI in a class project or office workflow), and deeper exploration of ethical scenarios. The Advanced level could involve leading an AI project, developing AI content (like

contributing to an open-source AI tool or creating new workflow), and leadership in AI initiatives on campus. Each level should have defined learning objectives and activities – for instance, the group’s plan includes tables of curricular goals and objectives for each level. Participants could choose how far to go based on interest or role requirement. Crucially, each level culminates in some form of assessment or capstone (a test, a project, a presentation) to earn the corresponding certificate.

- **Launch the “AI Ambassador” Program:** Implement the AI Ambassador initiative to put peer-led learning into action. The program would invite applications or nominations for students, faculty, and staff who want to serve in this capacity. Those selected (perhaps a cohort of ambassadors each year) will undergo a specialized training regimen to deepen their AI competencies – covering technical skills, *leadership, and ethical use of AI*. According to the working group’s concept, ambassadors benefit by developing leadership and expertise, and in turn, they educate and support their peers. For example, student ambassadors might host AI tool “study halls” in the library, or faculty ambassadors might pair with colleagues to help redesign assignments. Ambassadors could also serve as liaisons in their departments or clubs, channeling feedback to the Taskforce and helping tailor training to specific needs. By unlocking the ability of motivated individuals to champion AI literacy, the program creates a grassroots network of AI facilitators across campus. (Notably, this model has precedent in technology initiatives – similar to how some campuses have “digital technology ambassadors” programs – and can be very effective.)
- **Implement AI Mentorship & Peer Learning Opportunities:** In addition to ambassadors, create opportunities for structured mentorship in AI skill development. This could take several forms: pair up faculty who are confident with AI with those less so for one-on-one mentorship; set up a mentorship circle where an advanced student (maybe a Computer Science major or an alum working in AI) mentors other students from different majors on an AI project; or organize “AI learning teams” mixing students and staff working on a challenge. The group highlights that mentorship accelerates learning through *hands-on projects and personalized guidance*. For instance, a mentored project might involve a student and staff member working together on implementing an AI solution for a campus need (like a simple chatbot prototype for the library) – the mentor guides technical and ethical considerations, the mentee gains experience. The benefits include faster skill uptake, contextual learning (applying AI to real KU scenarios), and retention of skills through practice. Practically, the program could be coordinated through CEL or Career Development (for student-alumni mentoring). Mentor roles could also be attractive to alumni and industry partners, giving them a way to engage with KU.
- **Offer AI Certification and Badging:** Create formal AI proficiency certifications or digital badges to mark completion of training milestones. For example: after completing the beginner AI training (perhaps a series of workshops or an online course plus a short quiz/project), a participant earns a badge “AI Literate.” Intermediate might yield “AI Practitioner” and advanced “AI Leader” badges. Faculty/staff might earn “AI-Enhanced Teaching” or “AI-Enhanced Operations” certificates if they complete certain applied projects in those domains. The working group lays out strategies for implementing these certificates, including flexible delivery so people can do modules at their own pace and recognition that is shareable on professional platforms to aid careers. They also recommend continuous evaluation and updating of the certification content to keep up with emerging AI trends. By awarding credentials, KU not only incentivizes participation but also begins to set a standard benchmark for AI competency that

could be recognized beyond campus (e.g., an employer seeing a KU badge knows that person has certain skills).

### Implementation Strategies

- **Needs Assessment and Customization:** Begin by conducting a comprehensive needs assessment survey of faculty, staff, and students to identify current AI skill levels and priority training needs. Questions might include: “Rate your familiarity with AI tools like ChatGPT,” “What AI topics are you most interested in learning?,” “What concerns do you have about using AI?” etc. Analyze results by group to tailor the training content. For instance, if many staff indicate interest in learning how AI can automate Excel tasks, include that in the staff pathway; if students largely use AI for writing help but lack understanding of how it works, emphasize AI literacy basics for them. This assessment prevents a one-size-fits-all approach and ensures the curriculum addresses relevant gaps.
- **Collaborative Content Development:** Form a cross-departmental team to develop the AI training curriculum and materials. Leverage expertise from Computer Science (technical content), Education (pedagogical strategies), Business/Comm (industry perspective), Library (information literacy), etc., to create well-rounded modules. This collaboration can ensure content is accessible and interdisciplinary. For example, a module on “Ethical AI” might be co-developed by a philosophy professor and an IT expert. The group specifically notes partnering with departments already offering AI-related courses or any institutional research units, to keep content rigorous and pedagogically sound. We might also draw on existing resources from leading universities or online courses (some references were given to MIT, Stanford initiatives). Rather than reinvent the wheel, curate the best content and adapt it to KU’s context.
- **Flexible Delivery Modes:** To maximize participation, offer the training in varied formats – in-person workshops, live webinars, and self-paced online modules. Faculty and staff have busy schedules, so asynchronous options (recorded tutorials, online exercises via the LMS or an AI learning platform) are crucial. However, also include some synchronous elements (like live Q&A sessions or cohort-based short courses) to build community and allow real-time guidance. Possibly adopt a model where a cohort starts together with a kickoff workshop, then they complete self-paced units, and reconvene periodically for discussion. This hybrid approach brings both flexibility and accountability. Also consider micro-learning: bite-sized units that someone could complete in, say, 30 minutes, to lower time barriers. Track participation through whichever platform is used, so follow-ups can be sent to those who stop midway, etc., improving completion rates.
- **Incentivize and Integrate with HR/Academia:** Work with HR and Academic Affairs to incentivize completion of AI training. For faculty, completion of certain AI training could count toward required professional development hours or be noted in annual reviews. Perhaps even tie it into any existing teaching innovation awards or provide a letter of commendation from the Provost. For staff, the HR professional development program could list AI courses as recommended, and supervisors can be encouraged to allow work time for these (like sanctioned training hours). Possibly implement a gamification element – e.g., departments earn a “badge” for having 80% of their staff AI-trained, or individuals enter a raffle for a prize upon completing a module. *Another idea:* incorporate student AI competencies into co-curricular transcripts or honors – if a student completes an AI certificate, it appears on their co-curricular record or as a note on their

academic transcript (similar to how some schools record completion of leadership programs). This integration gives the programs formal weight.

- **Pilot and Scale:** Pilot the training program with a small group before full launch. For example, run the beginner student AI course with one group of first-year students (perhaps those in a Living Learning Community) in Fall 2025, or pilot the faculty training with one college's faculty. Collect feedback on content difficulty, relevance, and platform usability. Use that feedback to refine materials. Then scale up to the wider population in phases (maybe by volunteer sign-ups first, then eventually some parts could even be required for incoming students or new employees after proving successful). Also pilot the Ambassador program in a limited way – maybe start with a handful of ambassadors in one division – to figure out training and best practices, then expand the following semester.
- **Resource Utilization and Partnerships:** The working group referenced numerous external resources (ASU's AI site, Florida's AI Across Curriculum, etc.). Take advantage of these by incorporating proven content or tools. Additionally, consider partnerships: perhaps partner with online learning providers (like Coursera, which the infrastructure group noted is available) to give our community access to high-quality AI courses at low/no cost. Or partner with nearby institutions or the State System: if one university develops a great AI module, share it reciprocally. Partnership could also extend to industry – e.g., inviting a tech company to run a workshop on campus, or utilizing Microsoft/Google's AI literacy programs. This not only enriches our offerings but can also reduce development burden.

## Support and Resources

- **Personnel and Leadership:** Successfully implementing these programs will require dedicated personnel. At minimum, assign a Coordinator for AI Training – someone who can oversee curriculum development, scheduling, tracking, and improvement of the competency programs. This could be an existing staff role repurposed or a new hire (perhaps a technologist or instructional designer with AI expertise). Additionally, involve the Center for Engagement and Learning (CEL) and HR's training office closely, as they have infrastructure for workshops and can help integrate AI training into existing faculty/staff development workflows. Consider forming a standing subcommittee or working group under the Taskforce that continues focusing on training implementation and reports on progress.
- **Training Infrastructure:** For delivering content, ensure we have or invest in the right platform. The LMS (D2L) can host modules and quizzes, but perhaps a more specialized learning platform (like a MOOC-style interface or a badging system) would better handle issuing badges and tracking cross-audience progress. There are platforms for micro-credentials (e.g., Badgr/Canvas credentials) that might integrate with our systems. Also ensure that we have the software tools accessible for hands-on parts – e.g., if training involves trying a simple coding of AI, have an environment for that; if using AI for data analysis, ensure participants have access to the necessary datasets or tools. The AI Innovation Hub (from infrastructure recommendations) could play a role here by providing the sandbox environment for training exercises.
- **Budget for Materials and Incentives:** Some budget will be needed for developing high-quality materials (maybe hiring an external consultant to create video content or purchasing licenses for professional e-learning content). Also allocate funds for participant incentives (small completion rewards, printing certificates, etc.). If we pursue digital badging through a third-party platform, there might be a cost per badge. Another cost could be stipends for the

ambassadors or mentors – while many might volunteer, offering something like a small scholarship for student ambassadors or a stipend/release time for faculty ambassadors acknowledges their labor and ensures commitment. If possible, fold some of these costs into existing professional development budgets but earmark specific funding for AI competency development to cover gaps.

- **Facilities and Equipment:** Ensure training sessions (especially hands-on workshops) have appropriate facilities. A computer lab or a bring-your-own-device setup with robust Wi-Fi and any required software pre-installed is crucial. For any in-person sessions, we might need labs with higher-end computers if doing something computational. Alternatively, set up access to cloud computing resources for training exercises (for instance, Google Colab or Azure credits for courses requiring model training). If the AI Hub is established early, it can serve as the venue for many training events.
- **Continuous Improvement and Assessment:** Plan for ongoing assessment of the competency programs. Collect data: number of participants at each level, badge completion rates, feedback surveys post-training, and even pre/post testing to measure learning gains. This data will help adjust content difficulty, fill any competency gaps, and demonstrate the impact to leadership. Over time, consider more formal assessment – e.g., testing a sample of students on AI literacy outcomes or including questions about AI readiness in graduating student surveys, to gauge institutional progress. Dedicate some person's time (maybe the Institutional Research office can help) to analyze and report these outcomes annually.

By systematically developing AI competencies, KU ensures that the investments in technology and curricular integration are matched by investments in people. The ultimate success of our AI initiative hinges on our collective human ability to adapt and grow; this plan equips our community with the knowledge and confidence to do exactly that – moving from being aware of AI to being adept with AI.

## Infrastructure and Technology Readiness

### Summary

The Infrastructure and Technology Readiness subcommittee assessed KU's technical infrastructure and policies to determine what is needed to support expanded use of AI on campus. Their work follows a phased approach that began even before the Taskforce was formally convened. In Phase One (Initial Assessment), completed by early 2025, the team reviewed existing IT capacity, data governance practices, compliance requirements, and peer benchmarks to establish KU's baseline "AI readiness." They found that "*the university has foundational technology in place to begin exploring AI applications,*" but this assessment also "*highlight the need for stronger data controls to mitigate risks*" of sensitive information exposure. Phase Two (Guardrails and Security Enhancements) is currently underway, focusing on implementing safeguards that enable safe AI usage – such as data classification labels, data loss prevention systems, and stricter access controls. Looking forward, the subcommittee makes strategic recommendations for moving beyond readiness toward innovation. These include targeted investments in an AI innovation sandbox environment, expansion of AI tool access across campus, and sustained support and training resources to keep up with AI's rapid evolution. In sum, this group's recommendations ensure that KU's technical backbone is secure, robust, and scalable for our AI ambitions, and that our policies and practices guard against data privacy, security, and compliance pitfalls.

### Strategic Priorities

- **Data Security and Governance:** The foremost priority is to protect university data in any AI implementation. AI systems (especially cloud-based or third-party tools) introduce risks of data leakage or improper handling of sensitive information. The subcommittee prioritizes establishing data governance measures like data sensitivity labeling (tagging data by confidentiality level) and Data Loss Prevention (DLP) mechanisms to prevent unauthorized sharing. This means if someone tried to input confidential student info into an AI tool, systems ideally would flag or block it. Additionally, adherence to regulatory standards (FERPA for student records, HIPAA for any health-related data, etc.) must be baked into AI projects from the start. Clear policies – such as an AI Acceptable Use Policy – provide the governance framework for what is and isn't allowed. In short, creating a secure environment for AI is non-negotiable: all tools and usage must align with privacy laws and best practices to maintain trust and compliance.
- **Infrastructure Capacity and Scalability:** AI applications can be resource-intensive (e.g., large language models, training algorithms on big data). A priority is to ensure KU's IT infrastructure can handle AI workloads. This includes evaluating and possibly upgrading computing power (servers, GPU capacity, or cloud computing credits), storage for large datasets (e.g., data warehouses), and network bandwidth for heavy data transfer. While the Phase One review said we have a basic foundation, scaling up may require investments in either on-premises hardware (like an AI server cluster or expanding our virtualization environment) or strategic use of cloud services. Scalability also means having flexible infrastructure – e.g., the ability to quickly sandbox a new AI tool for testing without jeopardizing core systems. The concept of an AI Innovation Hub ties into this: it would be a dedicated environment (possibly cloud-based) where higher-end AI processing can occur, isolated from sensitive systems but sufficient for experimentation. Ensuring infrastructure readiness also involves standard IT tasks: up-to-date software, robust databases, integration capabilities (so AI tools can securely interface with our data when needed), and continued *monitoring and maintenance* as usage grows.

- **Accessible AI Tools and Platforms:** To democratize AI use on campus, it's a priority to provide broad access to AI tools and platforms for those who need them. Currently, individuals might be experimenting with free online AI services, which could pose security or consistency issues. The recommendation is to expand licensing for reputable AI software or services, effectively making sure more students and staff have the tools at their fingertips. For example, licensing an AI data visualization tool for the whole campus, or getting enterprise access to GPT-style services where KU can control data retention. An additional recommendation is to consider building in-house tools. Wider availability of tools fosters hands-on learning and integration into curriculum. This must be balanced with vetting: IT should vet tools for security before adoption. The subcommittee sees this as an investment in capability and equity – ensuring that it's not just those in specialized programs or with technical savvy who can use AI, but any department or unit that could benefit (with IT support to onboard them).
- **Ongoing Support and Skill Readiness in IT:** Technology readiness is not just hardware and software; it's also having the human IT support to implement and maintain AI solutions. A priority is to allocate sustained support resources – meaning funding for IT staff time, possibly new hires with AI expertise, and continuous training for IT personnel to keep pace with AI developments. As AI tools roll out, the IT team will field more questions, manage more integrations, and need to adjust security measures. Ensuring the IT staff are knowledgeable (for instance, providing them training through something like the Coursera AI Academy, as noted) is key to success. Also, setting aside budget for maintenance and updates is important; AI services often iterate quickly, and we may need to upgrade or reconfigure systems regularly. In addition, we recommend that the university library examine a curated collection of e-books that are related to teaching with AI. We also want to highlight the potential for democratizing the support process through the establishment of learning communities where faculty and staff can support each other in the development of critical skills related to AI. In summary, plan for the people and process side of tech readiness – having an adaptive IT organization with the capacity to support AI innovation long-term.

## Key Recommendations

- **Implement Phase Two Security “Guardrails”:** Complete the in-progress Phase Two initiatives to put critical security guardrails in place for AI use. The key components are:
  - **Data Sensitivity Labels:** Classify institutional data (public, internal, confidential, highly confidential) and tag data in our systems accordingly. Then, configure AI tools and user access so that, for example, highly confidential data (like Social Security numbers or health info) cannot be fed into any AI system that isn't explicitly approved for that level.
  - **Data Loss Prevention Systems:** Deploy DLP tools that monitor data traffic, especially to external services, and can automatically detect patterns like someone trying to upload a batch of student records to an AI site and block or flag it. This might involve additional software or cloud security services integrated with our network and email systems.
- **Access and Identity Management Enhancements:** Strengthen identity and access management, ensuring that AI tools or APIs only grant access to authenticated users with appropriate permissions. If we integrate an AI service with our student data, ensure only the specific data needed flows and only to authorized roles. Multi-factor authentication and role-based access should extend to any new AI platforms as well.

- **Standard Security Monitoring:** Expand our logging, monitoring, and auditing to include AI activity. For instance, if an AI system is used to generate decisions or handle data, log those transactions. Regularly audit usage logs for anomalies that might indicate policy violations or vulnerabilities. These steps all aim to create a safe computing environment where AI can be used without leading to data breaches or compliance issues. The report notes that some guardrails were being piloted in limited environments – those pilots should be evaluated and then rolled out campus-wide once validated.
- **Establish an AI Innovation Hub (Secure Sandbox):** Create a centralized AI Innovation Hub that serves as KU's nexus for AI experimentation and development. This hub would likely be a combination of a *physical space* (perhaps a specialized computer lab or section of the data center) and a *virtual environment* (dedicated servers or cloud resources). It should be a secure environment where faculty, students, and staff can access AI tools, high-performance computing resources, and sample datasets to tinker with AI projects without risking production systems or data. For example, the hub might allow a class to use a powerful AI model on a large dataset in a contained setting or enable staff to test an AI script to automate a workflow. By consolidating AI experimentation here, KU ensures oversight: the environment can have proper security measures, and users are educated on guidelines while using it. The hub also fosters interdisciplinary collaboration – it can host workshops, hackathons or be a meeting ground for those interested in AI across campus. Funding would be needed for initial setup (hardware or cloud subscriptions), and ideally a staff or faculty coordinator would oversee it (potentially the AI initiative leader mentioned in academic support). This investment signals that KU is serious about being a place to innovate with AI, and it gives our community a sandbox to try ideas safely and legally (for instance, with proper licenses for software, etc.).
- **Expand AI Tool Licensing and Access:** Budget for and implement an expanded licensing program for AI software/tools so that our campus community can use cutting-edge AI tools broadly in teaching, learning, and administration. Concretely, this might mean acquiring campus licenses for tools such as: data science and machine learning platforms (like MATLAB with AI toolboxes, or cloud-based Jupyter notebook services), AI content creation tools (for media or design programs), or specialized AI applications relevant to certain fields (e.g., an AI chemistry modeling software for sciences, or AI language learning apps for languages department). In addition, consider institution-level API access to large AI models (for example, a subscription to OpenAI or Google's AI services under an enterprise agreement) where usage can be monitored and privacy assured. Broader availability means that instead of a handful of classes or offices using AI, many more can dabble, which accelerates skill building and integration into everyday processes. The working group specifically notes that *wider availability will accelerate skill development and help identify practical applications*. To do this effectively, catalog the current AI tools people are using or requesting (perhaps via a survey or during focus groups) and prioritize acquiring those that offer most value across multiple departments. Ensure that any tool we license meets our security standards or can be configured to (for example, ability to turn off data collection by the vendor). Pair this rollout with user guidelines or quick-start manuals (potentially in partnership with the Awareness group's resource hub) so people know what's available and how to get started.
- **Secure Ongoing Support and Funding:** The subcommittee recommends ensuring sustained funding and support for AI infrastructure over time. This should translate into concrete actions: include AI infrastructure needs in the university's budget planning and capital project lists. For

instance, commit to an annual allocation for cloud computing credits or hardware refresh for AI servers. Also, allocate funds for at least one dedicated IT position (or part of an existing position) focusing on AI systems support. This person might manage the AI Hub environment, coordinate tool deployments, and liaise with academic projects needing tech support. Another aspect is investing in training for IT staff – for example, send IT team members to workshops on AI systems management, or have them earn certifications in AI/machine learning through online courses. The Coursera AI Academy was mentioned as already available; encouraging key staff (and even faculty/students) to utilize that for upskilling can be part of this. The logic is that AI tech isn't a one-time expense – it requires a shift in IT operations to include new expertise and continuous improvements, so planning for that long-term is critical.

- **Leverage External Resources and Cloud Solutions:** Recognizing that KU alone may not host all needed infrastructure, the group hints at benchmarking and possibly using cloud services and external partnerships. A recommendation is to take advantage of resources like cloud platforms (Azure, AWS, Google) for heavy AI tasks rather than trying to own all hardware. Many cloud providers have education grants or credits – pursuing those could yield cost-effective computing power for AI experiments or student projects. Also, engage with consortia or initiatives (the report references Educause studies) to stay aligned with higher-ed trends. Perhaps join a system-wide effort if PASSHE is developing shared AI resources. This collaborative approach could amplify KU's capabilities without bearing the full cost individually. In essence, be strategic in deciding what to build in-house (for control/security) vs. what to source externally (for scalability and advanced capabilities) and manage risk in those decisions.

### Implementation Strategies

- **Phased Rollout of Security Controls:** Execute the security upgrades in a phased manner to minimize disruption. Start with pilot implementations – for example, pilot the DLP software on a subset of systems or one department's accounts to fine-tune its rules (ensuring it's not over-blocking or missing things). Similarly, test the data labeling classification on a certain dataset to see how users interact with it. After iterative adjustments, proceed to a campus-wide rollout by a set deadline (perhaps require that by end of 2025, all critical systems have DLP and labeling fully operational). Provide training to IT admins and end-users as needed – e.g., if faculty will see new warnings when they attempt something that triggers DLP, inform them in advance through training or pop-up guidance. Also, update the incident response plan to account for AI-related security incidents (like if a breach happens via an AI tool, how do we contain and report it?).
- **Develop Governance Policies with Stakeholder Input:** Finalize the AI Acceptable Use Policy and any related guidelines by collaborating between IT, legal, and functional stakeholders. It should clearly state what types of data can/cannot be used with certain AI tools, responsibilities of users (like not exposing sensitive data), and consequences for violations. Run this draft by faculty governance and student government to get buy-in and improve clarity. Once approved, communicate it widely (tie in with the Awareness group's efforts – making sure every user is aware of the dos and don'ts). Policies should also cover procurement: e.g., a rule that any new AI software must be vetted by IT for security before purchase. Set up a simple process for requesting approval to use a new AI tool, so that risk assessment is integrated into innovation rather than a blocker.
- **Pilot the AI Innovation Hub with Targeted Projects:** For the AI Innovation Hub, consider launching it first as a pilot project space for a few high-priority initiatives. For example, identify

2-3 projects like: a faculty research project needing GPU computing, a student group hackathon on AI, and an administrative proof-of-concept (like testing an AI advising assistant). Use these as test cases to configure the hub environment (ensuring necessary software, library access, security settings for each). This will reveal what common needs are (e.g., maybe everyone needs a certain development framework installed, or there's high demand for a particular dataset storage solution). It will also surface any integration issues, like needing VPN or special network configurations. From these pilots, formalize the hub's offerings: perhaps an environment with pre-installed AI development tools, a secure dataset repository, user authentication procedures, etc. Then open it up more broadly for proposals – people can request access or resources in the hub for their projects. Promote the hub's existence via workshops or a simple web portal where potential users can learn how to get involved.

- **Procurement and Inventory of AI Tools:** Quickly take inventory of what AI-related tools are currently in use or in demand across campus. IT can send out a survey or add a question in their support ticketing ("are you using any AI tools for work/study that we should know about?"). Also ask the Taskforce working groups for input on key tools to license (the Student Success group, for instance, mentioned AI tutoring software like Anki and career tools like resume checkers – these might be candidates to centrally provide). Once a list is compiled, prioritize based on security and value. Negotiate licenses preferably that allow enterprise features like administrative controls and data agreements. Implement these tools in coordination with the relevant department (e.g., Career Services for a resume tool, Library for a research AI tool). Roll them out with training sessions so that uptake is good and risk of misuse is low (people learn the proper way to use them under policy). Maintain a centralized list of approved/available AI tools on the IT website (cross-link with the AI resource hub) so users know what's sanctioned and supported.
- **Training IT Staff and Power Users:** Conduct specialized training for IT staff and select "power users" (perhaps the ambassadors or faculty champions) on new AI infrastructure and tools. For example, train the Service Desk on how to assist someone having trouble with the AI platform login or with interpreting a DLP warning. Train system administrators on managing the AI Hub environment or adjusting the DLP rules when necessary. In parallel, identify key tech-savvy individuals in various units (maybe a tech-oriented professor or a departmental IT liaison) and give them deeper training on how to leverage the new tools – they can serve as first lines of support or innovators who demonstrate the tools to peers. Encourage IT staff to take the Coursera AI courses (as mentioned) and possibly to experiment themselves in the AI Hub to understand capabilities. This cultivates internal expertise, which is vital as more people start to use these resources and come to IT with questions or issues.

## Support and Resources

- **Funding and Budget:** The infrastructure enhancements will need concrete funding allocations. Work with the administration to secure funding in two categories: capital or one-time funds for initial outlays (like hardware for the AI Hub, initial software license purchases, contracting any needed security software) and recurring funds for ongoing costs (cloud service subscriptions, license renewals, extra data storage, etc.). It might be possible to reallocate some existing IT budget lines (if some legacy systems are being retired or efficiencies found), but likely new funding will be needed given the scale of AI resources. Frame these requests in terms of strategic value – link them to improved student outcomes, research competitiveness, or operational savings to make the case that they are investments, not just expenses.

- **IT Staffing:** Depending on current capacity, consider hiring or designating a dedicated AI Systems Engineer/Administrator within IT. This person could manage the AI Hub, handle integration of AI tools with our systems, and be the point person for troubleshooting AI platforms. If hiring a full FTE isn't feasible immediately, perhaps an existing staff member can be given specialized training and allotted time (with backfill for some of their other duties) to fulfill this role. Additionally, involve student workers or graduate assistants with computing background to assist (this doubles as experiential learning for them). Some universities create "innovation teams" – a small cross-functional group (maybe one IT, one faculty, one student) focusing on emerging tech projects; something similar could be established here to support AI pilot users more closely.
- **Vendor Partnerships and Support:** Ensure that we leverage support from vendors whose tools we adopt. Many enterprise software purchases come with training hours or consulting – use those to have experts help set up our environment optimally (e.g., getting an OpenAI or Microsoft engineer to advise on secure deployment). Build relationships so we are aware of updates or can influence feature requests that matter to us (like better privacy options). Also, if using cloud credits from a company, see if they provide solution architects or educational liaisons to assist in cloud setup for AI – this can save our IT figuring out everything from scratch.
- **Monitoring and Evaluation Tools:** Invest in or enhance monitoring tools to oversee AI-related activities. For example, to evaluate the effectiveness of DLP, we'll need good reporting dashboards that show incidents caught and actions taken. For the AI Hub, possibly implement user analytics to see which tools are most used, how many projects run, etc., to report impact and justify the hub's upkeep. Also consider cybersecurity insurance or enhanced coverage now that AI systems present new attack vectors; discuss with risk management if our insurance covers incidents via these new tools.
- **Interdepartmental Coordination:** Finally, maintain a tight coordination between IT and other divisions during implementation. Many recommendations require joint efforts – e.g., IT and Academic Affairs partnering on the AI Hub (for governance of who can use it for what), IT and Student Affairs on implementing new student-facing AI systems, etc. Perhaps establish a small steering subcommittee (under the main Taskforce or governance committee) specifically for Technology & AI that includes IT leadership and representatives from key user groups. They can meet regularly to review progress on infrastructure deployment, set priorities (like which tool to launch next), and ensure user needs are being met by tech capabilities. This collaborative governance will help align technical efforts with academic and operational goals, ensuring technology readiness supports, not outpaces or lags, the rest of the AI initiative.

In summary, these infrastructure and tech readiness actions lay the groundwork – they make it possible for all the exciting AI applications (in teaching, student support, operations) to run smoothly and securely. With strong guardrails, a sandbox for innovation, and accessible tools supported by knowledgeable staff, KU can confidently expand its use of AI, knowing that our digital foundation is solid.

## University Operations and Student Affairs

### Summary

The University Operations and Student Affairs working group explored how AI can enhance non-academic functions of the university – the “behind the scenes” and student life aspects that impact everyone’s campus experience. From their analysis of current best practices and future trends, it’s clear that AI has significant potential to streamline routine operations, improve decision-making, and offer new student services in areas like facilities management, HR, enrollment, advising, residence life, dining, and athletics. At the same time, they acknowledge KU’s context as a regional comprehensive university: we won’t be building giant AI research programs like an R1, but we can adopt practical AI tools (many of which are increasingly affordable via cloud services) to drive efficiency and enhance the student experience. The group’s findings coalesce into several strategic themes: pursuing efficiency and cost-effectiveness (AI to do more with less), using AI to provide 24/7 or personalized services that augment staff efforts, keeping AI deployments human-centered (staff augmentation, not replacement), and ensuring ethical, transparent use with appropriate policies and oversight. They provide concrete examples in each domain (e.g., predictive maintenance in facilities, chatbots in admissions, early alert systems in student wellness), as well as broad recommendations to guide AI use in operations (like establishing governance, piloting projects, and training staff).

### Strategic Priorities

- **Operational Efficiency and Automation:** Identify and implement AI solutions that can automate or optimize routine administrative tasks, thereby saving staff time and reducing costs. The priority here is to target processes that are repetitive, data-heavy, or time-sensitive. Examples include: predictive maintenance in Facilities (AI analyzing sensor data to predict equipment failures and schedule maintenance before breakdowns), AI-assisted recruiting and onboarding in HR (tools that scan resumes or answer applicant questions, shortening time-to-hire), and predictive analytics for enrollment management (AI models to improve outreach strategies and yield). By using AI in these ways, KU aims for efficiency gains – doing things faster, or with fewer errors, or at lower cost – which is especially valuable given resource constraints. However, the group stresses that efficiency initiatives should still align with our mission and not compromise service quality or fairness.
- **Enhanced Student Services and 24/7 Support:** Use AI to extend and personalize student support services in areas like advising, mental health, residence life, and dining. A priority is ensuring students can get help or information anytime, not just during office hours. For example, chatbots can answer common student questions (financial aid, registration, housing queries) on a 24/7 basis. AI-driven early alert systems can monitor student engagement data to flag who might need intervention (academic or wellness), enabling staff to reach out proactively. In mental health, AI can power self-help apps or triage systems that detect when a student’s text or email indicates distress, prompting timely human follow-up. In residence life, “smart dorms” with AI could optimize living conditions and respond to student needs (e.g., learning preferences for heating, or facilitating roommate matching). These applications contribute to Enhanced Student Support – the goal is a campus where students feel services are responsive, personalized, and always accessible, with AI handling initial or simple interactions and humans providing deeper care when needed.
- **Human-Centric Implementation:** A guiding priority is to ensure AI is used to augment and empower staff, not to eliminate the human touch. The group emphasizes maintaining a

“*human-centered AI*” approach. This means involving staff in AI deployments (so they trust and shape the tools), clearly communicating that AI is there to handle drudge work and free them for higher-level functions and preserving human judgment in decision loops. For instance, an AI might recommend which job applicant resumes to prioritize, but HR staff make final decisions to avoid blind trust in the algorithm. In student affairs contexts, AI can provide information or initial support, but human counselors, advisors, and coaches continue to do the relational and critical thinking work. This priority addresses a common concern: staff fearing they’ll be replaced or students feeling alienated. By foregrounding *“staff augmentation, not replacement”* in all communications and plans, we set the expectation that AI will handle tasks that are tedious or impossible for humans to do at scale, allowing our people to focus on the empathetic, complex, and strategic aspects of their roles.

- **Ethical Use and Governance in Operations:** As we integrate AI into operations, we must uphold ethics, equity, and compliance. Priorities here include: rigorous vetting of AI solutions for bias (e.g., making sure an AI used in hiring doesn’t inadvertently discriminate); ensuring privacy (especially if using student data in analytics – maintain FERPA protections and get appropriate consent for any personal data usage); and transparency (students and staff should know when they are interacting with an AI vs a human, and how AI-involved decisions are made). The group recommends creating governance structures such as an AI Ethics and Operations Committee to oversee use cases. In practice, for each new AI application, there should be a review for ethical considerations and an ongoing oversight mechanism (maybe that committee conducts periodic audits or requires reports on AI outcomes). Aligning AI use with KU’s values – access, inclusion, student focus – is paramount. For example, if an AI advising system is deployed, it should be monitored to ensure it’s not disadvantaging any group of students or giving harmful advice. This priority ensures that in the drive for innovation and efficiency, we *“do no harm”* and in fact use AI to advance fairness and support for all students.

## Key Recommendations

- **Create a Cross-Functional AI Governance Committee:** Establish an AI Ethics & Operations Committee (or broaden the existing AI Taskforce’s mandate) that includes representatives from key areas – IT, Institutional Research, Student Affairs, Academic Affairs, Social Equity, Legal, etc. – to evaluate and approve AI use cases in operations. This committee would serve as the clearinghouse for any department wanting to implement a new AI tool. They would assess proposals on criteria such as: Does this align with KU’s mission? What data will it use and are privacy measures in place? Is there any potential for bias or negative impact? How will success be measured? By instituting this oversight, we ensure a unified strategy and ethical consistency. The committee can also develop guidelines and best practices for AI in operations (much like an IRB but for AI projects) and help coordinate efforts so that one department’s learning is shared with others. Importantly, including diverse members (with knowledge of equity, for instance) means these evaluations will incorporate multiple perspectives, not just tech or managerial ones.
- **Provide AI Literacy and Training for Staff and Administrators:** As AI tools roll into operations, invest in AI literacy among staff and administrators so they understand these tools and can use them effectively. This dovetails with the competency development group’s work, but specifically for operational staff: e.g., train advisors on how an AI early alert system works, train HR staff on how to interpret AI-driven analytics in hiring, train facilities personnel on using AI sensors or dashboards. Additionally, include responsible-use training to discuss boundaries (what AI should

or shouldn't do, how to verify AI outputs). The recommendation is to integrate such training into professional development schedules – for instance, at staff development days or via internal certificate programs. When staff are well-trained, they are more likely to trust and adopt the AI and also catch errors or issues (acting as that human oversight layer). Another facet is educating students: e.g., if we use an AI tool in career services, we should teach students how to use it and understand its limitations, aligning with career readiness recs. Essentially, pair any AI deployment with a human capacity-building plan.

- **Pilot Projects with Measurable Outcomes:** Take a “pilot, evaluate, then scale” approach to implementing AI in operations. Rather than a big bang rollout, start with small-scale pilot initiatives in a few select areas to test the waters. For example: deploy a chatbot on the Financial Aid website to answer common questions for one admissions cycle and measure if it reduces call volume and improves satisfaction; or pilot an AI tutoring chatbot in one or two courses or a tutoring center to see if students find it helpful. Each pilot should have clear metrics (KPIs) and a timeline. The group explicitly recommends measuring outcomes and scaling successful initiatives. So, after the pilot, analyze results: Did predictive analytics in advising correlate with improved retention for the pilot group? Did the facilities AI cut down energy costs in one building significantly? Publish or share these results internally. If positive, secure buy-in and resources to expand the project to more units. If not, tweak or abandon. This experimentation mindset allows learning with minimal risk and helps build evidence for larger investments. It also can produce quick wins to show stakeholders the value of AI, which encourages broader support.
- **Collaborate and Partner Externally:** Recognizing resource constraints, the group advises KU to partner with vendors, consortia, or peer institutions to access AI tools and expertise cost-effectively. This could involve joining buying consortia for AI services to get better pricing, collaborating with another university to co-develop a solution (e.g., two PASSHE schools jointly build an AI advising platform specific to their needs), or leveraging vendor offers like pilots or research trials. Also, working with companies through internships or advisory boards could glean insights (for instance, local industry might share how they use AI in operations, which we could emulate). Another partnership vector is seeking grants together with others, e.g., an NSF grant for AI in student support across multiple campuses. The emphasis is that we don't have to do it all alone – by networking and collaborating, we can get more done with less cost and learn from others. In addition, these partnerships might bring in external validation (vendors might have data on what worked at other similar institutions, consortia might have guidelines to follow) which can inform our local implementations and avoid reinventing the wheel.
- **Align AI Initiatives with KU's Mission and Student-Centric Values:** Ensure that every AI project in operations explicitly aligns with and reinforces KU's mission of being student-centered, accessible, and supportive. In practice, this means using our mission as a check: e.g., when implementing an AI system for academic advising, ask “Does this help us support students more effectively and equitably?” If an AI tool would primarily cut costs but at risk of reducing service quality to students, it might not pass this test. The group's recommendation is almost a principle: *“Align AI use with KU's mission of access, affordability, and student-centered success.”* They even frame AI not as a tech luxury but as an enabler of those core goals. To adhere to this, include mission alignment in project proposals (the governance committee could require a statement on how a project helps students or staff). Also, communicate AI wins in terms of mission: for example, if AI saved money in operations, maybe that freed up budget for financial

aid (supporting access/affordability) – make that connection clear. By constantly tying AI initiatives back to institutional values, we maintain focus on what truly matters and keep community support on our side.

## Implementation Strategies

- **Business Process Review and Target Identification:** Conduct a process-mapping exercise in key operational areas to identify pain points or inefficiencies that are good candidates for AI solutions. For instance, map out the Admissions communication flow with prospects: are there delays or repetitive tasks (like manually sending follow-ups) that an AI chatbot or automated system could handle? Or look at maintenance request handling in Facilities: is there data (work orders, sensor readings) we're not leveraging that could schedule maintenance more smartly? By understanding current processes, we can pinpoint where AI fits best. Include the staff who do the work in these reviews – they often know where the bottlenecks are and can suggest ideas. This also helps to ensure AI tools truly address real needs and get staff buy-in because they helped identify them.
- **Cross-Department Pilot Teams:** For each pilot project, form a small cross-department team that includes end-users, IT support, and data specialists. For example, an AI project for student advising should have advisors (end-users), someone from IT or IR who manages data, perhaps a faculty member or student rep, and the vendor or developer if applicable. This team approach ensures the pilot is well-rounded: advisors define requirements (e.g., what kind of alert is useful), IR provides the data and builds the model, IT ensures integration with existing systems, and so on. Regularly meet this team to oversee pilot implementation, troubleshoot issues, and decide on adjustments. Essentially, treat each pilot like a mini-project with proper project management discipline – clear goals, roles, and review checkpoints.
- **Stakeholder Communication and Change Management:** When introducing an AI system in an operational unit, use strong change management practices. Clearly communicate to the staff *why* it's being implemented (tie to mission and to making their jobs easier), *how* it works (in non-technical terms), and *what* will change in their day-to-day. Provide channels for them to voice concerns or suggestions and take that feedback seriously (for example, if staff say an AI-driven report is hard to understand, refine it). Perhaps assign a “change champion” within the department – a staff member who is excited about the AI tool and can informally help peers (this is analogous to the ambassador idea but within each office). Also, reassure about job security where needed by emphasizing the augmentation narrative – e.g., “This system will handle scheduling so you can spend more time one-on-one with students.” Celebrating early success (e.g., “the chatbot answered 1,000 questions in its first month, freeing our staff to handle complex cases”) can help reinforce positive attitudes and ownership of the new tool.
- **Data Ethics and Review Protocols:** Implement a protocol for any AI that involves student or employee data to undergo a data ethics and privacy review. This is likely a role for the governance committee. It might include developing a standard checklist: Has the data been anonymized or minimized appropriately? Is there potential bias in the data (like underrepresentation of a group) that the AI might perpetuate? Do we have consent if needed? Will the AI's decisions be explainable to users? By formalizing this review, we ensure every project thinks through these issues up front. Additionally, plan for a *post-implementation audit*: after an AI system has been in use for some time, audit outcomes for fairness – e.g., have an equity officer or IR person check that an AI-driven process (like an admissions yield model or a

financial aid allocation algorithm) isn't unintentionally disadvantaging any student subgroup. Regular audits can catch issues early and allow us to tweak algorithms or processes accordingly.

- **Feedback from Students:** Particularly for student-facing AI services (like chatbots or AI advising tools), incorporate student feedback loops. Pilot with a subset of students and gather their opinions: Did the AI answer your question? Was it user-friendly? Did you feel comfortable with it? Use surveys or focus groups. Students might also suggest new features or content for the AI based on what they and peers often need. For example, if a residence life chatbot didn't answer a certain roommate concern that many have, students can highlight that. Continuously updating the AI knowledge base or capabilities based on real student interactions will make it more useful and trusted. Moreover, showing students that we care about their experience with these tools reinforces that we're doing this *for* them, not *to* them.

## Support and Resources

- **Executive Sponsorship and Policy Support:** Ensure that the highest levels of university leadership are openly backing the responsible AI adoption in operations. Cabinet-level support (VPs for Administration, Student Affairs, etc.) is crucial for resource allocation and for setting the tone that AI projects are priorities, not side experiments. Leadership can help clear hurdles (for example, by approving necessary policy changes or investments). They can also articulate boundaries: e.g., a policy statement that "KU will not replace employees with AI but will use AI to enhance services" provides reassurance and clarity for planning. High-level buy-in will legitimize the efforts and encourage departments to participate rather than shy away.
- **Funding for Tools and Vendors:** Many operational AI solutions will likely come from vendors as turnkey or SaaS products, which means recurring costs. We need to budget for those. Some may yield savings (e.g., less overtime or outsourcing after automation), but others might be net new costs for better service. Build a business case for each: if a chatbot costs \$X per year, estimate what value it provides (reduced burden on staff, maybe enabling a staff position to be redirected to something else, or improved student satisfaction which links to retention, etc.). For grants, look for innovation or student success grants that could fund pilot implementations (even the state might have innovation funds for universities adopting new tech to improve outcomes). Also consider internal reallocation – if AI leads to cost savings in an area, some of those savings can be reinvested to fund further AI projects, creating a virtuous cycle.
- **Technical Integration Support:** Many AI tools will need to integrate with our existing systems (SIS, CRM, HRIS, etc.). Plan resources (IT developer time or integration platform middleware) for these integration projects. For example, an AI that does predictive analytics for retention needs data from Banner, D2L, etc. – ensure we have API access or data warehouse pipelines for that. We might need to purchase or build connectors and definitely will need IT staff to maintain them. If such technical heavy lifting is required, schedule it into IT's project calendar with appropriate priority.
- **Maintenance and Continuous Improvement:** When an AI project moves from pilot to production, assign clear ownership for maintaining it. For instance, if a chatbot is live, who updates its knowledge base with new info each semester? If a predictive model is in use, who retrains it with new data each year to keep it accurate? Operational units might need new roles or designated responsibilities for this. If staff capacity is an issue, consider hiring roles like a "Data Analyst for Student Success" who partly manages these AI models and dashboards for student affairs, or a "Business Process Automation Specialist" who can oversee RPA/AI in admin

processes. Without upkeep, AI tools can quickly become outdated or less effective. So, plan for that ongoing effort.

- **Monitoring and Success Metrics:** Establish dashboards or reports for key success metrics in each AI deployment. For instance, monitor how many inquiries the chatbot handles vs human staff, how much time is saved in HR recruiting, changes in student engagement scores due to AI interventions, etc. This data not only helps refine operations but also is critical to demonstrate ROI to university leadership and to justify scaling up or investing further. If an AI tool doesn't meet targets, that's a signal to adjust or sometimes to conclude the experiment. Monitoring also ensures that any negative unintended effects (like a drop in personal engagement or an uptick in any errors) are caught and addressed.

By thoughtfully implementing these recommendations, KU's operations and student services can become more efficient, proactive, and tailored – using AI where it adds value and freeing our people to focus on the human aspects of education and campus life. Ultimately, this approach aspires to create a campus where AI-driven processes quietly improve the environment and support system, while students and staff enjoy the benefits through smoother experiences and enhanced support, all done in a way that stays true to KU's commitment to its community.

## Student Success and Career Readiness

### Summary

The Student Success and Career Readiness working group focused on how AI can be harnessed to support students from enrollment through graduation and into their careers. Their perspective is twofold: academic success (helping students learn and persist) and career readiness (preparing students for the AI-influenced job market). They recognize that AI can provide powerful new tools to analyze and improve student outcomes, such as predictive analytics to identify at-risk students for early interventions, or AI-driven tutoring systems to personalize learning support. At the same time, they emphasize that in an era where AI handles many technical tasks, *human skills* like emotional intelligence, communication, and ethical judgment become even more critical differentiators for student success. Therefore, their recommendations balance the integration of AI literacy and tools for students with initiatives to strengthen students' soft skills and ethical awareness. They also discuss aligning AI initiatives with existing frameworks (for example, embedding AI competencies into KU's general education Student Learning Outcome on information literacy). The overarching aim is to graduate students who are AI-literate, versatile, and resilient – able to leverage AI in their personal and professional lives but also bringing uniquely human strengths that complement AI. Additionally, the group addresses the need to update certain student support infrastructures (like data systems and career services platforms) to fully utilize AI's potential in improving retention and placement outcomes.

### Strategic Priorities

- **Integrating AI Literacy into Student Education:** Ensure that all students, regardless of major, gain a foundational understanding of AI – what it is, how it works at a basic level, its capabilities and limitations, and how to use it responsibly. In essence, treat AI/digital literacy as a core competency for students (much like writing or critical thinking). This might be done through curricular means (e.g., modules in first-year seminars or gen-ed courses) and co-curricular workshops. The idea is to dispel misconceptions (students should know where AI excels and where human judgment is still crucial) and give students practical skills like how to effectively prompt an AI tool. By doing so, every KU graduate will be *AI-aware* and can continue learning new tools as they emerge – a critical trait for lifelong success in a tech-evolving world.
- **Data-Driven Student Success Interventions:** Utilize AI and predictive analytics to better support students academically and personally, thereby improving retention and completion. The priority is to consolidate and analyze student data (academic performance, engagement, background, etc.) in order to identify which students might be at risk and what interventions could help. By generating "*retention risk scores*" or similar, advisors and support staff can focus efforts proactively – reaching out to a student showing early signs of struggle before it snowballs. This requires integrating data from multiple systems (admissions, LMS, advising notes) into one model. The group suggests also improving data management (cleaning, merging records) so that analyses are accurate. Ultimately, the priority is to make student support more *predictive than reactive*, enabling earlier, tailored interventions (tutoring, counseling, mentoring) that keep students on track.
- **Career Readiness in an AI-Augmented Economy:** Prepare students to thrive in the job market by embedding AI awareness and skills into career development activities and academic advising about careers. This means training students in how AI is used in job searching (like AI-reviewed resumes or digital interview platforms) and in the workplace (so they can discuss and demonstrate AI skills to employers). The group points out that most future jobs will expect some

basic AI literacy, and some will need advanced skills, so a *tiered approach* to career AI education is needed. Concurrently, ensure faculty and career staff stay abreast of AI trends in various industries and can advise students accordingly. Another angle is aligning credentials to workforce needs – meaning if local employers need a certain AI skill, KU might offer a micro-credential or workshop on it. The priority is that by graduation, students not only know how to use AI tools for their own learning but can carry those competencies into their careers (e.g., listing an AI Coursera certificate on their resume, or talking about an AI project they did in class) and also possess the adaptability to keep learning new technologies.

- **Emphasizing Emotional Intelligence and Ethical Use:** In the age of AI, *human* qualities become distinguishing factors for success. The group underscores teaching and reinforcing emotional intelligence (EQ), soft skills, and ethical decision-making as part of student development. They note that while AI can automate tasks, it cannot replicate empathy, interpersonal communication, creativity, or ethical reasoning. Students must learn to work *with* AI while still exercising their own judgment and maintaining awareness of biases (their own and the AI's). This priority translates to integrating soft skills training into curricula and career programs (e.g., teamwork, cultural competence, adaptability) and using reflective practices when AI is involved (like having students evaluate how using AI affected their problem-solving). It also includes building policies or frameworks that encourage students to use AI as a supplement, not a substitute, for their own cognitive effort. By fostering self-awareness and ethics, KU ensures that students don't become over-reliant on AI or lose critical thinking skills but instead become *ethical leaders* in navigating human-AI collaboration.

### Key Recommendations

- **Enhance Digital Literacy & AI Awareness in the Curriculum:** Introduce or bolster programming that teaches students core AI concepts and digital literacy early in their academic journey. For example, incorporate an “AI Essentials” module in the First-Year Experience or a required Gen Ed tech literacy course. This module could cover: how AI systems work at a conceptual level (non-programmers don’t need the math, but the idea of algorithms/training data), the types of tasks AI can and cannot do, examples of AI in daily life, and discussions about ethics and bias. The working group specifically suggests that first-year students could take courses on “Prompting Essentials” (perhaps through Google or Coursera content). They also propose creating a micro-credential called “AI Essentials for College Students.” This micro-credential might involve completing a set of tutorials or a short online course and a quiz/project, ensuring that by the end, students can effectively use basic AI tools, understand their limits, and follow ethical guidelines. This credential could be promoted during orientation or through certain classes, and once earned, students can put it on their resumes. By formalizing AI literacy in this way, we guarantee a baseline competency across the student body.
- **Predictive Analytics for Student Retention:** Develop and deploy a predictive analytics system that uses machine learning to analyze existing student data and generate *“retention risk” scores or alerts*. Concretely, this involves pulling data from systems like Slate (admissions), Banner (student information), D2L (learning management system), Starfish (advising/early alert platform), etc., and letting an AI model find patterns that historically correlate with attrition (for instance, low LMS activity + a certain GPA drop might predict risk). An example use case provided: an AI could recommend a schema combining advising notes, attendance, and GPA data to identify at-risk students and then help staff target outreach. Steps include ensuring data integration (create a *centralized data warehouse* of student success indicators) and cleaning the

data (using AI for ETL tasks like merging duplicate records). Once the model is live, train advisors and success coaches to interpret and act on the predictions – e.g., if a student is flagged high-risk, maybe the system also suggests possible interventions (tutoring, financial aid counseling, etc.). The goal is to intervene earlier than we traditionally do, potentially improving retention and academic success by not waiting for midterm grades or student self-reports alone.

- **Centralize and Clean Student Data for Insight:** In tandem with predictive analytics, the recommendation is to create a centralized, comprehensive student data system that breaks down silos between departments. This means compiling data from academic records, housing, engagement (clubs, events swipes), support services usage, etc., into one place where AI tools can analyze holistic student profiles. They mention performing ETL and using AI (like NLP to extract data from unstructured sources like PDFs or emails) to ensure the data is in usable form. This central repository will not only serve AI retention models but could be used for other analyses (like understanding which experiences correlate with better outcomes or feeding data to an AI-driven degree planning tool in the future). This recommendation addresses the often-fragmented nature of student info – making it easier to connect the dots. It requires collaboration across IT, registrar, student affairs, etc., and likely a project to either expand our data warehouse or adopt a student success analytics platform. The outcome would be improved data integrity and accessibility for any student success initiative.
- **Leverage AI-Powered Learning and Tutoring Tools:** Investigate, pilot, and (if effective) scale AI-driven learning aids to supplement traditional instruction. For example, open-source software like *Anki* for adaptive flashcards (which the group mentions) uses AI to adjust to a student's knowledge level, reinforcing difficult concepts more. Another avenue is AI tutoring systems or smart homework platforms that give immediate feedback – akin to having a personal tutor always available. We might pilot a tool in a high-enrollment challenging course (like Intro to Math or Biology) and see if it improves student performance. Additionally, such tools can help with study skills by tailoring repetition and reviewing areas of weakness. By making these available (and training students how to use them), we empower students to take more control of their learning outside class. The key is ensuring these tools are vetted (accurate content, no honor code issues if used properly) and free or easily accessible. Perhaps partner with the library or tutoring center to integrate them into workshops. The recommendation is to be proactive: *"investigate and use open-source AI tutoring software"* that can provide novel learning experiences (like spaced repetition, intelligent quizzes) to enhance student success.
- **Embed AI Use into Information Literacy Outcome (Gen Ed):** The group specifically notes an idea to embed “responsible AI use” into KU’s General Education Student Learning Outcome #5, which currently deals with information literacy. SLO #5 is about retrieving, evaluating, and using information ethically. AI is now part of the information landscape (think using ChatGPT to gather info or analyze text). So they recommend formally including AI in that outcome’s scope – for example, teaching students how to evaluate AI-generated information for credibility, or how to cite AI as a source properly, and emphasizing ethics of using AI content. They reference KU documents on information literacy outcomes and hint that this should be a faculty-driven process through GEPAC (which aligns with what Academic Integration group said). This is more a policy/curriculum alignment step, but important as it signals institutionally that AI literacy is part of being an educated person. If adopted, courses in the Gen Ed program that address info literacy might update assignments to include an AI component (e.g., compare a human-written article vs an AI summary on a topic and assess differences). It ensures consistent, intentional

coverage of AI use across the curriculum, not leaving it to chance whether a student encounters it.

- **Integrate AI into Career Services and Career Prep:** Revolutionize how career readiness is delivered by incorporating AI tools and AI literacy into career workshops and services. Concretely:
  - Update career development workshops to include segments on *AI in the job search*. For instance, when teaching resume writing, also show students how to use an AI resume critique tool (the group mentions “promote AI Coursera certificate and adding AI badges to resumes/LinkedIn”). When preparing for interviews, include exposure to AI interview practice platforms or common AI interview questions.
  - **Encourage completion of AI credentials:** e.g., guide students to earn the free *Google AI for Everyone* or Coursera AI certificate and then advertise that credential on their LinkedIn. Career coaches can treat AI skills similar to how they’ve encouraged, say, Microsoft Office skills in the past.
  - **Adopt AI in career advising:** Use AI-driven platforms for personalized career guidance – e.g., tools that match student profiles with job openings or suggest career paths using AI algorithms. The group suggests employing AI for tasks like personalized job matching and networking opportunities, especially leveraging alumni data. This could involve implementing AI in our career management system to recommend jobs or mentors to students based on their background and interests.
  - **Automate repetitive tasks in career services:** For example, use an AI resume reviewer to give students instant feedback (the group cites that as a way to save staff time and let them focus on higher-impact coaching). Similarly, an AI could run mock interview sessions and provide analytics on speech patterns, filler words, etc., so career staff can spend their time on deeper coaching rather than initial practice interviews. The recommendation also notes assessing learning outcomes from these AI tools (surveying students to see if AI advice actually helped in real interviews or job applications), ensuring these tools are effective supplements to human guidance.
  - **Faculty & Staff Engagement in Workforce AI Trends:** Encourage each academic department (faculty) and relevant staff (like career coaches) to stay informed about how AI is changing their field and incorporate that into teaching/advising. The group explicitly recommends hosting expert speakers on AI literacy for faculty/staff so they can guide students with up-to-date knowledge. For instance, a department could invite an industry professional to talk about AI in that discipline (AI in finance, AI in healthcare, etc.), and faculty can then relay those insights in classes or career advising for that major. They also suggest offering workshops across disciplines like “AI in the Arts” or “AI in Education” to broaden faculty and staff perspectives. This ensures the people advising students on careers or teaching capstone courses are aware of the AI tools and expectations in those professional realms. Additionally, faculty can update curriculum (like adding a discussion or assignment on AI in their field), which directly benefits career readiness by contextualizing AI skills in the students’ chosen disciplines.
  - **Use AI to Strengthen Alumni Connections and Outcomes Tracking:** Deploy AI to better connect students with alumni for mentoring or networking and to analyze career outcomes data for

continuous improvement. Specifically, the group suggests an AI system that can match students to alumni based on factors like career interests, location, courses, demographics – effectively a smart alumni-student connector to facilitate informational interviews or mentorships. This could be part of an alumni networking platform or built into our existing systems. It can help students build networks, which is crucial for job placement. Also, apply AI to the First Destination Survey (FDS) results or other career outcome data. AI might find patterns (e.g., which majors or experiences correlate with higher employment in 6 months or identify clusters of underemployment that need addressing). Such insights can guide program improvements or targeted career interventions in academic programs. Essentially, leverage AI to ensure we are closing the feedback loop on how well we prepare students for the workforce and where we can do better.

- **Emphasize Emotional Intelligence (EQ) in the Curriculum and Policy:** Incorporate development of soft skills and emotional intelligence deliberately into the student experience. The group even goes as far as suggesting policy implications, like potentially adding requirements or co-curricular expectations around EQ skills. For example, they recommend:
- **Curriculum infusion:** embedding soft skill development into general ed, major courses, and career programming. This could mean more group projects, leadership opportunities, service learning – proven ways to build teamwork, empathy, and communication.
- **AI-assisted reflection tools:** using AI to help students gauge their soft skills, e.g., an AI that analyzes written reflections or group discussion contributions for indicators of empathy or bias, giving students feedback to improve.
- **Assessment and recognition of soft skills:** create frameworks or even digital badges for competencies like communication or teamwork, measured via rubrics, peer feedback, or portfolios. This formal recognition, possibly on transcripts or through co-curricular records, would incentivize students to focus on these areas. The principle is that as AI takes over technical tasks, students who excel will be those with strong human skills – so we should double down on cultivating those alongside technical know-how.

### Implementation Strategies

- **Integrate AI Literacy in Orientation and Gen Ed:** Kick-start AI awareness by including a segment on AI in student orientation or first-year seminar. This could be a fun interactive session (like “Meet your AI Assistant” demo or a discussion on AI ethics in college) to spark interest. Then, work with General Education committees to incorporate AI topics into relevant courses – e.g., the existing Information Literacy Gen Ed course (if one exists) could add an assignment on using AI tools to research and the ethical implications. Monitor the experiment of micro-credentials: perhaps pilot the “AI Essentials for Students” micro-credential with a volunteer group of freshmen (maybe those in a Living Learning Community focused on technology or Honors students) to get feedback, then refine and open to all. If it’s online self-paced, ensure it’s engaging (maybe gamified) and not too time-consuming. Consider making it a requirement eventually or tying it to something like the First Year Experience course credit.
- **Build a Cross-Department Retention Data Team:** Form a team including Institutional Research, IT data specialists, and Student Success staff to implement the predictive analytics for retention. They need to define what success means (e.g., increasing first-to-second year retention by X%),

decide on the modeling approach (buy an off-the-shelf student success analytics system vs. build in-house), and ensure data quality. Perhaps start with a simple model focusing on first-year students (where retention is most critical). Use historical data to build and validate the model, then integrate it with an existing early alert platform so that advisors see the AI risk flag alongside other alerts. Provide training sessions for advisors on how to interpret and what actions to take – maybe develop an “AI-informed advising protocol” so it’s clear that the AI flag is one of several factors they consider in outreach prioritization. Also plan student privacy safeguards: maybe let students know their data is used in this way for their benefit (transparency) and always allow human review rather than any automated messaging without oversight.

- **Upgrade Data Infrastructure:** The recommendation to centralize data likely requires an IT project to either implement a new student success data platform or significantly enhance our data warehouse. Garner buy-in from all data “owners” on campus (registrar, student affairs, etc.) to share their data. Possibly invest in a tool that uses AI for record matching and NLP extraction as they described – maybe our CRM or SIS add-ons offer such capabilities. If building in-house, allocate developer time to create pipelines that merge data sources regularly. Use modern tools (if not already) like an analytics dashboard that advisors and faculty can use to see integrated student profiles (with permissions). Also involve the Office of Assessment or GEPAC if integrating with learning outcomes data.
- **Pilot AI Tools for Learning Support:** Collaborate with the tutoring center or a few willing faculty to pilot AI learning aids. For example, incorporate *Anki* flashcards usage into a Biology 101 supplemental instruction program – have students use it for a semester and track if their exam performance improves vs a control group. Or pilot an AI writing assistant (one that is educational, not just giving answers) in an English comp lab section to see if it helps with writing quality when taught properly. Collect student feedback – did it help them learn or just do the work for them? Use that feedback to establish guidelines: e.g., recommend usage of AI for certain practice but not for graded tasks, etc. If beneficial, scale up: license the tool or integrate it into the LMS so all students can optionally use it. Provide brief training on effective use (maybe a video tutorial or workshop via tutoring services). The key is to position these as *learning enhancements* not cheating shortcuts – focus on the adaptive practice and feedback they provide.
- **Career Services AI Integration Plan:** The Career Center should develop an internal plan for adopting AI. This might include:
  - Choosing a resume review platform (like VMock or similar) and rolling it out to students with instructions. Perhaps embedding it into the workflow: student submits resume, gets AI feedback, then meets with a career counselor for higher-level improvements. Evaluate usage and satisfaction after launch.
  - Implement an interview AI practice tool (like Big Interview’s AI component or Google’s Interview Warmup tool). Maybe incorporate this into mock interview nights – students do an AI interview first, then a human one, and compare results.
  - Use an alumni mentoring/job matching AI tool, possibly part of a platform like PeopleGrove or LinkedIn’s alumni tool, to connect students to alumni. The group’s suggestion of using AI for student-alumni connections could be operationalized by

tagging alumni in our alumni database with skills and having an AI match interests (if such a software exists).

- Train career staff on these tools so they can assist students and also gather insight on improving the tools.
- Promote AI learning to students: maybe hold a special event like “Future of Work and AI” panel with employers to talk about how AI is affecting recruiting and jobs, reinforcing to students why these new skills matter.
- Finally, measure outcomes: e.g., do students who used the AI resume tool get jobs faster or report higher confidence?
- **Soft Skills Initiatives:** Work with Student Affairs, academic departments, and Career Dev to amplify soft skills. For example:
  - Have reflection assignments in high-enrollment courses where students use an AI and then reflect on their own process and any biases, building that self-awareness muscle.
  - Expand or highlight extracurricular programs that build EQ – e.g., leadership workshops, diversity trainings, team competitions. Possibly incorporate digital badges for soft skills (some universities have leadership certificate programs).
  - Consider if Gen Ed or majors can formalize some soft skill learning outcome (some majors might already require teamwork or presentations).
  - Use AI to help measure soft skills subtly: maybe an AI analyzes video of group project presentations to give feedback on teamwork dynamics or communication clarity (experimental, but something to explore).
  - Recognize soft skill development in some way that students value – awards, a section in the co-curricular transcript, etc., so it’s not just invisible learning.

## Support and Resources

- **Collaboration Between Academic and Student Affairs:** Initiatives like predictive analytics and soft skills development will need tight collaboration between Academic Affairs (faculty, advising) and Student Affairs (retention specialists, counselors, etc.). Possibly form a joint Student Success AI implementation team, co-chaired by leaders from both sides, to oversee these projects. This ensures alignment and resource sharing (e.g., IR might belong in both divisions or serve both). It also helps avoid duplication – like advising and faculty working off different data if not coordinated. Top-level support from the Provost and VP of Enrollment/Student Affairs should stress that this is a campus-wide priority needing cross-unit cooperation.
- **Technology and Software:** For predictive analytics, we may need to acquire a student success analytics platform or analytical software licenses (like SPSS Modeler or use open-source Python/R with proper support). We’ll also need to invest in data integration tools. Consider allocating a budget for a consultant or additional data analyst to set up the initial models if our staff is limited. For career services, budget for any new platform subscriptions (some AI resume tools charge per student or annual fees). For micro-credentials and soft skills badges, look into a badging platform (some LMS have them or we could use an external service). Ensure the library

and IT are consulted too, because digital literacy often involves them (they might incorporate AI literacy into information literacy programs if given support).

- **Staffing and Training:** Possibly hire or designate a Student Success Data Analyst or similar role to maintain the predictive model and coordinate data efforts. Without a person accountable, these efforts can flounder after initial setup. Same with career – maybe train a current career advisor to be the “technology/AI in career” specialist who maintains familiarity with these new tools and mentors others. Faculty and staff will need training: e.g., advisors need to learn the new dashboard, faculty need guidance on how to talk about AI usage in class ethically. Plan workshops (maybe mandatory for advisors, voluntary for faculty, with stipends or certificates for completion to incentivize). Leverage early adopters to demonstrate to peers (e.g., a faculty member who used AI in assignments can share at a teaching forum to inspire others).
- **Policy and Guidelines:** Develop guidelines around AI academic use that align with student success goals. For instance, academic integrity policy should mention AI-assisted work – what’s acceptable vs not – so students know how to ethically use tools (this ties to embedding in info literacy outcome and something the Academic Integration group would do too). Also, privacy policy for student data use in analytics – maybe add language that student data is used internally to help them, aggregate reporting only publicly, etc., to quell any privacy concerns. And, if implementing widespread use of AI for student support, ensure compliance with regulations like FERPA at every step (e.g., if using a cloud tool that processes student data, have a proper data agreement).
- **Monitoring Impact on Success Metrics:** Keep a close eye on key student success indicators (retention rates, course success rates in gateway courses, engagement levels, internship/job placement rates). Over a few years, see if they improve as AI-related interventions come online. This requires good assessment design – you might compare cohorts before/after certain changes or between participants and non-participants in a new program. If something isn’t moving the needle, revisit or try a different approach. If it is, use that evidence to secure more funding or support to expand it. Also track usage stats: how many students earn the AI micro-credential, how many use the resume AI tool, etc. – measure reach and strive to increase it each year.

With these supports and careful execution, KU can transform how it supports students academically and professionally. The result should be more students staying in school and achieving their goals, and graduates who are not only comfortable with AI technologies but also standout candidates in the job market for their blend of technical savvy and human skills. In doing so, we uphold our responsibility to prepare students for a future where they will work alongside AI – equipped to use it ethically and effectively, while bringing the creativity, critical thinking, and emotional intelligence that will always be in demand.

## Overarching Recommendations

*(This section synthesizes the most important cross-cutting recommendations that span all working groups, providing a unified direction for the AI initiative.)*

- **Articulate a Unified AI Vision and Strategy:** Develop a high-level AI strategic plan for Kutztown University that consolidates the Taskforce's work into a clear vision, goals, and phased objectives for the entire institution. This strategy should be endorsed by senior leadership and communicated widely so that all stakeholders understand *why* KU is embracing AI and *how* it will happen in a coordinated way. It would outline how AI integration in academics, operations, student services, etc., all interconnect to advance KU's mission. For instance, the plan might establish that KU strives to be a "leader in ethical AI integration among regional universities," focusing on enhancing student learning, improving efficiency, and preparing students for the future. A unified strategy ensures everyone – from academic departments to administrative offices – is moving in the same direction and can see how their efforts contribute to the larger picture.
- **Establish Strong Governance and Policy Frameworks:** Given the broad impacts of AI, it is crucial to have robust governance in place. Create an AI Governance Committee or expand the Taskforce into a permanent committee that oversees AI policy, ethics, and coordination. This body should include representation from academics, IT, student affairs, legal, and administration, ensuring all perspectives are considered. Charge it with responsibilities such as approving new AI projects (especially those using sensitive data), reviewing ethical considerations for AI use (akin to an IRB role), and updating policies as needed. On the policy front, implement key policies like the AI Acceptable Use Policy (to guide proper use of AI tools by faculty, students, and staff), academic integrity policy updates regarding AI-generated work, and data privacy policies specific to AI platforms. Ensure these policies are clearly communicated and accompanied by guidelines (e.g., tool-specific guidelines for popular AI tools). By having governance and policy frameworks, KU creates guardrails that allow innovation to proceed with oversight and alignment to laws and values.
- **Invest in Secure and Scalable Infrastructure:** Across all groups, the need for adequate technology infrastructure to support AI came through. KU should allocate funding and resources to build out the necessary IT infrastructure and security measures so that AI tools can be used safely at scale. This includes deploying the security "guardrails" (data classification, DLP systems, access controls) to protect data, and establishing the AI Innovation Hub (secure sandbox environment) for experimentation. It also involves ensuring sufficient computing resources (whether on-premises GPU servers or cloud computing budgets) so that faculty and students can run AI models without hindrance. Another aspect is licensing: expand access to AI software and tools by obtaining campus-wide licenses or subscriptions, rather than having pockets of uncoordinated usage. Importantly, plan for sustainability – the infrastructure budget should cover not just initial setup but ongoing maintenance, upgrades, and technical support. Having a strong, secure infrastructure backbone will empower all other AI initiatives (academic, operational, etc.) to function effectively and without major incident.
- **Cultivate AI Talent and Literacy University-Wide:** A recurring theme is the need for *people* to have the knowledge and skills to engage with AI. As an overarching effort, KU should implement comprehensive AI literacy and training programs for all its constituencies – students, faculty, and staff. This might take the form of multi-tiered competency development (as outlined by the

competency group) where everyone is expected to reach a baseline proficiency (understanding what AI is, how to use core tools, ethical principles) and those in specific roles get more advanced training relevant to their needs (faculty focusing on pedagogy, staff on workflow improvements, students on career-related AI skills). Make AI training a visible and supported part of professional development: e.g., offer incentives or certification for faculty who complete AI teaching workshops, encourage staff via HR programs to attend AI skill webinars, and possibly incorporate AI competency into student orientation or first-year experience. By raising the general AI fluency on campus, we reduce fear and resistance and increase the pool of innovative ideas. An AI-competent community is more likely to find creative applications, use tools effectively, and uphold ethical standards, because they *understand* the technology rather than mystifying or avoiding it.

- **Promote a Culture of Ethical AI Use and Human-Centered Values:** It is essential that KU's AI initiative be grounded in our ethical commitments and human-centered approach to education. We recommend a cross-cutting emphasis on AI ethics, transparency, and human oversight in every domain of implementation. This means setting explicit principles (perhaps adapting frameworks like "responsible AI" guidelines) that prioritize things like privacy, fairness, and accountability. For example, ensure that whenever AI is used in decision-making that affects people (students or employees), there is a human in the loop and an explanation process. Conduct bias audits on AI systems (in hiring, admissions, analytics) and adjust accordingly. Be transparent with students and staff: clearly inform when an AI is being used (like an AI tutoring system or a chatbot they're interacting with) and what data it's using. Encourage critical thinking about AI among all community members – essentially making ethics part of the AI literacy training. Moreover, reinforce the message that AI is a tool to augment human capability, not replace human value. Celebrating human skills like creativity, empathy, and leadership alongside AI advancements will maintain balance. By cultivating this ethical, human-centric culture, KU can differentiate itself as a university that leverages AI in service of human empowerment and equity, rather than efficiency alone.
- **Foster Collaboration and Information Sharing:** The multifaceted nature of AI means silos must be broken down. We recommend structures and practices to foster collaboration across departments and divisions on AI projects and share best practices. For instance, establish a regular "*AI in Education and Operations*" forum or roundtable where faculty and staff from different areas present what they're doing with AI, what they've learned, and even failures to avoid. Encourage joint projects (e.g., Computer Science students working with Student Affairs on an AI project as a class assignment, thereby aiding operations and educating students). Use the governance committee or Taskforce continuation to facilitate cross-pollination of ideas – it can identify overlapping needs (say, both Academic Affairs and HR need a similar text analysis AI for different reasons) and coordinate a single solution. Additionally, maintain a centralized inventory or repository of AI tools in use, vendors, and project outcomes, accessible to the campus community, so someone interested in AI in one office can see who has done something similar elsewhere. Collaboration should extend externally as well: connect with PASSHE sister institutions to compare notes or jointly pursue grants, and engage with professional networks (like Educause, which has AI reports) for broader insight. This collective approach will save time and resources, prevent duplication of effort, and accelerate innovation by building on each other's successes.

- **Ensure Resource Allocation and Continuous Assessment:** At the leadership level, treat the AI initiative as a strategic priority that deserves sustained investment and assessment. This includes dedicating financial resources (for technology, training, and potentially staffing as mentioned), but also integrating AI goals into existing planning and budgeting processes. For example, the university's strategic plan or annual goals might include specific AI-related targets (like "by 2026, reduce administrative processing time in area X by Y% through AI" or "incorporate AI content into all first-year seminars"). Tie some budget decisions to these targets to guarantee follow-through. Equally important is continuous assessment: establish metrics to evaluate the impact of AI initiatives across the board. These may include student outcomes (retention, satisfaction), operational metrics (time or cost saved, service usage stats), faculty outcomes (adoption rates of AI in curriculum, feedback on training), etc. Charge the governance committee or Institutional Research with producing an annual AI Initiative Impact Report – highlighting what's working, what challenges exist, and where to adjust. By systematically tracking progress, KU can make data-informed decisions on scaling projects, re-prioritizing efforts, and demonstrating accountability to stakeholders (including trustees, who will want to see results of these innovations). This cycle of invest-implement-evaluate will ensure the initiative stays on course and delivers tangible benefits over time.
- **Prioritize Communication and Change Management:** As an overarching practice, prioritize transparent communication and inclusive change management at every step of the AI initiative. This means keeping the campus community informed about what's happening – via updates, town halls, success stories – which the Awareness group's plan covers in detail. It also means listening to feedback and addressing concerns as AI changes roll out. By doing so, we build trust and buy-in, which are critical for the initiative's success. People are more likely to embrace new tools and processes if they feel informed, heard, and prepared. Utilize the strategic communication plan to continually reinforce the narrative that AI adoption at KU is thoughtful, supportive, and aimed at making everyone's work or study better. Leadership should be vocal champions but also open ears – visibly adjusting plans if valid concerns or new ideas emerge from the community. Embedding this adaptiveness ensures the initiative is not rigid; it can evolve with input and as technologies change, while maintaining a united, positive momentum.

In summary, these overarching recommendations can be thought of as the "*connective tissue*" that links and supports the specific recommendations of each working group. By establishing strong governance and policy, investing in people and infrastructure, upholding ethics and mission alignment, and ensuring coordination and communication, KU will create an environment in which all the individual AI initiatives – from classrooms to administration – can flourish together. This integrated approach maximizes the benefits of AI for our institution while managing risks and paves the way for KU to be a model of responsible, mission-driven AI integration in higher education.

## Implementation Timeline

Having outlined the strategy and recommendations, a phased implementation timeline will guide the roll-out of KU's AI initiative. This timeline is divided into stages with specific goals, objectives, and milestones, recognizing that becoming an "AI-ready" campus is a multi-year journey. It also identifies key success indicators to measure progress and notes potential challenges to anticipate. Below is a structured timeline spanning approximately five years (2025–2030), which can be adjusted as needed based on real-world developments:

### Phase 1 – Foundational Setup (Late 2025 – 2026)

**Goals:** Establish the essential governance, policies, and initial programs that form the groundwork of the AI initiative. Create clarity and buy-in across the university and begin capacity-building.

#### Key Objectives (2025–2026):

- **Governance & Policy Formation:** By Fall 2025, form the permanent **AI Governance Committee** (if not already in place) with a clear charter. Complete drafting of key policies such as the AI Acceptable Use Policy, guidelines for AI in academic integrity, and data governance protocols. Aim to have these approved by the end of 2025 so they can be communicated in early 2026.
- **Awareness Campaign Launch:** Kick off the AI Awareness & Strategic Communication Plan in early 2026. Conduct stakeholder focus groups by Spring 2026 and develop targeted message maps. By Summer 2026, roll out the first wave of multi-channel communications: launch the AI initiative website/hub, distribute an introductory "AI @ KU" brochure, and host an initial town hall meeting to address questions.
- **Initial Training & Pilot Education Programs:** Develop the pilot version of the AI literacy module or micro-credential for students ("AI Essentials") in Spring 2026. Perhaps integrate it into a few First-Year Seminar sections or offer it online to volunteers. Also, offer the first faculty/staff AI workshop (e.g., an "AI 101 and Teaching" session through CEL) before Fall 2026. These early offerings will start building a core of AI-aware individuals and provide feedback for scaling.
- **Infrastructure Assessment & Quick Wins:** Building on the Phase One infrastructure assessment, prioritize any critical upgrades that can be done quickly. For example, by mid-2026, implement basic data classification labels and an interim procedure for vetting AI tools (even if the full DLP solution isn't ready). Also, set up a pilot version of the AI Innovation Hub in a limited capacity: perhaps secure a small cloud environment or repurpose a computer lab by Fall 2026 to allow a handful of faculty/student projects to start (this can be a "quick win" demonstration).
- **Operational Pilots Planning:** Identify 1–2 operational pilot projects to initiate by late 2026. For instance, decide on deploying a chatbot for one administrative area (like Admissions or Financial Aid) and a predictive analytics prototype for first-year student retention. Assemble project teams and define metrics for these pilots so that implementation can begin on a small scale.

#### Milestones:

- *Q4 2025*: AI Governance Committee established; policy drafting completed and submitted to leadership for approval. Board or cabinet briefing on AI initiative status (to ensure leadership is aligned).
- *Q1 2026*: AI Taskforce (or governance committee) publishes a short strategic plan document or executive summary of recommendations (possibly an outcome of this report) to the campus. Stakeholder focus groups held (with representation from faculty, students, staff). IT completes initial security check – e.g., ensures any ongoing AI usage has interim safeguards and registers known AI applications in use.
- *Q2 2026*: Official adoption of AI policies; communication of these policies via campus-wide email and town hall. AI resources webpage goes live on the Provost's site, containing policies, FAQs, and a form for AI project proposals. First “AI Awareness Week” event is conducted toward end of spring semester (e.g., showcase of faculty experiments, a guest speaker) to maintain momentum.
- *Summer 2026*: Select faculty and staff undergo training-of-trainers (perhaps a group attends an external AI in education workshop or completes advanced online training). The AI Innovation Hub pilot environment set up (milestone: environment operational, even if just in testing mode). Admissions or another department signs contract for chatbot or other pilot tool, with implementation planning started.
- *Fall 2026*: Launch of initial curriculum integrations – a few courses include the new AI module or assignment, and the student “AI Essentials” micro-credential is offered broadly (even if optional) to the incoming class. Kick-off of operational pilots: e.g., chatbot live in one department by mid-Fall on a limited basis, and the predictive model producing a list of at-risk students for advisors to review in Fall. Data governance sub-group begins Phase Two work like testing DLP on email systems. A report on Phase 1 accomplishments is compiled at end of 2026, noting policies in place, number of people trained, pilot status, etc.

#### **Success Indicators:**

- By end of 2026, we should see tangible signs of engagement and structure: e.g., 100% of relevant staff aware of new policies (perhaps measured via a short policy quiz or acknowledgement form), >30% of faculty have attended at least one AI informational session or town hall, and a baseline survey indicates increased understanding of AI among stakeholders compared to before the campaign.
- Initial training participation: e.g., perhaps 200 students completed the pilot AI micro-credential, and ~50 faculty/staff underwent some AI training in 2026.
- The governance committee is actively reviewing proposals (say, they reviewed 5 AI project requests and green-lit pilots with proper checks in place).
- Short-term pilot outcomes: by end of Fall 2026, the Admissions chatbot answers, say, 1,000 questions with a high satisfaction rating, or the retention model identified a set of students and 80% of them were contacted by advisors (process outcome). These early metrics will validate the direction.

- Fundamentally, success in Phase 1 is measured by foundation completion: the campus has a framework (policies/governance) and is excited and informed rather than fearful, evidenced by feedback surveys showing positive sentiment trending upward.

#### **Challenges:**

Potential challenges in this phase include change resistance or anxiety (address by heavy communication and showing quick wins), policy approval delays (mitigate by early engagement of governance bodies in drafting), and resource strain for planning (most work is planning & training – ensure no one unit is overburdened by reassigning duties or hiring a short-term project manager for coordination). Additionally, technical hiccups in initial infrastructure (maybe DLP or hub setup issues) could arise – having vendor support or expert consultation can help. It's also possible that engagement is slow (people busy or skeptical) – hence the importance of leadership messaging and incentivizing participation (like certificates, recognition for early adopters).

### **Phase 2 – Scaling and Integration (2027 – 2028)**

**Goals:** Build on the solid foundation to roll out AI initiatives broadly across academic programs, student support services, and operations. Move from pilot projects to wider implementation, ensuring integration into standard university processes. Continue to grow community expertise and adjust structures as needed.

#### **Key Objectives (2027–2028):**

- **Academic Integration at Scale:** By 2027, aim for each academic college or department to have at least one course with significant AI integration (assignment, module, or tool use) and by 2028 perhaps a majority of programs have updated learning outcomes to include AI competencies where relevant. The GEPAC subcommittee should by 2027 formulate the recommended inclusion of AI in Gen Ed SLOs (like info literacy) and pilot any new assessment rubrics for that. We aim for Fall 2028, when any student can identify multiple learning experiences where they have engaged with AI appropriately. Meanwhile, as faculty development continues, it is possible to mandate an AI teaching workshop as part of new faculty orientation by 2028 and offer advanced pedagogical training for those incorporating AI (like how to redesign assessments to account for AI).
- **Comprehensive AI Training Programs:** Transition the AI competency development program from pilot to full launch. In 2027, introduce the tiered certificate programs for faculty, staff, and students (Beginner/Intermediate/Advanced) Set participation goals: e.g., by the end of 2028, 80% of faculty have completed at least the beginner AI training, 50% of staff in relevant roles have completed training for their pathway, and perhaps 30% of students have earned the AI Essentials micro-credential (with an upward yearly trend). Additionally, formally launch the AI Ambassador program in Fall 2027 after selecting and training the first cohort in Spring/Summer 2027 Ambassadors should begin conducting peer workshops or consultations by late 2027.
- **Infrastructure & Tool Deployment:** Complete Phase Two infrastructure enhancements by mid-2027: campus-wide DLP and access controls fully implemented on major systems, the AI Innovation Hub fully operational (with policies for access, support staff assigned) by 2027's end. Evaluate whether additional hardware or cloud capacity is needed as usage grows (monitor hub utilization). Also, by 2027–28, implement the expanded AI tool licensing – e.g., all students and faculty have access to a suite of AI tools (maybe via single sign-on on the AI hub or library

portal). Introduce any major enterprise system enhancements: perhaps an AI plug-in for the LMS that assists with content (with proper vetting) or integration of an AI advising tool into Starfish by 2028. Continually monitor security: by 2028, the governance committee should have a quarterly review of AI system security audit logs as routine.

- **Expansion of AI in Operations:** Scale up successful operational pilots from Phase 1 and add new ones. For example, if the Admissions chatbot was successful, extend it to Financial Aid and Registrar by 2027. If predictive analytics for first-year retention worked, by 2028 expand it to sophomores or specialized populations (transfers, etc.), and integrate it deeply into advising processes (perhaps Starfish flags coming from the AI). Introduce additional pilots in new areas by 2027–28: e.g., an HR recruitment AI tool to filter applicants (with bias checks), a facilities AI scheduling for maintenance across campus, or an AI-driven scheduling assistant for courses or room allocation. Also, maybe a pilot in academic affairs like an AI tool to help with curriculum mapping or accreditation evidence gathering (just as examples of administrative AI use). By 2028, many departments should be regularly using at least one AI-augmented process.
- **Student Support & Career Services Transformation:** By 2027, the predictive analytics and early alert system should be institutionalized in the Student Success workflow – meaning every term, advisors get AI-informed reports and action them. Aim for measurable improvements: e.g., increase first-to-second year retention by a couple of percentage points by Fall 2028 (compared to pre-AI baseline), attributing in part to timely interventions. Also, by 2027, career services should have fully integrated AI: resume review and interview tools widely used (with majority of graduating students having used them at least once), AI content included in all career prep workshops, and possibly new offerings like “AI in Your Job Search” short course. By 2028, track outcomes like an increase in student engagement with career services or a bump in placement rates or student-reported confidence in AI skills on exit surveys. Also, formalize soft skill initiatives: perhaps by 2028, implement a “Career Readiness/Soft Skills” certificate or badge that students can earn, with components like EQ workshops and maybe some AI-reflection exercises (ensuring they consider ethical use).
- **Continuous Improvement Mechanisms:** During this phase, set up regular feedback loops and assessment cycles. For example, end of each academic year in 2027 and 2028, the governance committee produces an AI Initiative Progress Report for leadership, detailing metrics (training completed, tool usage, outcome changes, etc.) and making any course corrections. Use these assessments to adjust timeline or focus: e.g., if some tools underperform, replace them or provide more training; if some area (like graduate education or specific student demographics) isn’t benefiting, address that gap intentionally. Essentially, by 2028 we want a fine-tuned approach where initial kinks are worked out and successes are maximized.

#### **Milestones:**

- *Mid 2027:* Revised General Education SLO on Information Literacy (or equivalent) that incorporates AI usage is approved by faculty governance (if that route is pursued), ready to pilot in course assessments. AI Governance Committee, in collaboration with IR, publishes first annual progress report (covering 2026–27 results). First full cohort of AI Ambassadors (faculty, staff, students) completes training and is announced to campus. DLP and security guardrails fully functional – IT reports that in early 2027, they blocked X number of sensitive data leaks through AI as a sign of system working (with no major breaches reported).

- *Fall 2027:* Many “Phase 2” initiatives kick off: full AI competency training program open for enrollment to all (with marketing campaign to drive participation), more courses across the university using AI (perhaps a list of courses integrating AI published by Provost’s office as encouragement). Expanded AI chatbots or tools in at least 3 student service offices live by Fall. The AI Innovation Hub is inaugurated with a formal event or press release (highlighting a couple of initial interdisciplinary projects running in it). Possibly start seeing external recognition: e.g., a PASSHE or regional media piece on KU’s AI efforts (a milestone of reputation building).
- *Mid 2028:* Key metrics checkpoint: evaluate retention numbers after two cycles of AI-supported interventions (Fall 2027 and Spring 2028); if improvements are seen, that’s a milestone to celebrate. Similarly, review first destination data for class of 2027 (collected in 2028) to see if mention of AI skills increased or placement changed positively. By mid 2028, at least 50% of faculty have engaged in some AI training or integration (maybe measured via a survey or training records), which would be a significant cultural shift milestone. Governance committee runs a thorough review of all AI tools in use, retires any that are not effective or pose issues, and approves any new proposals for next academic year.
- *Fall 2028:* Essentially full program operation mode. AI considerations are now routine in planning (e.g., 2028–29 budget or strategic plan includes AI line items by default). Perhaps a second generation of AI Ambassadors is selected as first group cycles out if students graduated or faculty rotate – indicating program continuity. Soft skills initiatives like an EQ assessment in co-curricular transcript might be implemented for incoming students by this time. Technical milestone: upgrade or expansion of AI Hub if usage demands (could be adding more computing power or broadening access beyond pilot group).
- *End of 2028:* Another comprehensive progress report: likely showing which targets hit (maybe retention up by 3%, certain cost savings achieved, number of courses with AI doubled, etc.). Leadership can use this as evidence in possibly the next campaign or budget cycle. Decision point milestone: identify any pieces that need extension or additional support going into Phase 3 – e.g., do we need to institutionalize a Center for AI (if growth suggests that), or seek external funding for certain expansions. Essentially setting the stage for making AI a normal part of KU’s operations and pedagogy.

**Success Indicators:** By the conclusion of Phase 2 (end of 2028), success would be indicated by:

- **Widespread Adoption & Integration:** A large proportion of academic and administrative units actively using AI in some capacity. For instance, at least 75% of academic departments have integrated AI into curriculum or teaching practices; all key administrative departments (Admissions, Advising, HR, etc.) have implemented and are routinely using an AI tool for efficiency or service enhancement. AI is no longer a novelty for a small group, but a familiar part of campus life.
- **Improved Outcomes:** Tangible improvements in metrics that the initiative targeted. For academics: improved retention and possibly slight increases in GPA or course pass rates in courses where AI support was offered (compared to historical baseline), as well as improved student digital literacy self-assessments. For operations: shorter response times to common student inquiries (maybe measured by service stats where chatbots deployed), cost savings or productivity gains (like HR filling positions faster, facilities reducing downtime by X% from predictive maintenance), and resource reallocation to more value-added activities. For career

readiness: increasing percentage of students reporting confidence in AI skills and an uptick in employment in fields leveraging AI (if trackable), or more students engaging in internships due to improved matching via AI.

- **Cultural Shift:** Qualitative indicators like campus climate surveys showing that faculty and staff generally feel positive about AI's role at KU (contrasted to perhaps initial apprehension). Possibly recognition by external bodies – e.g., KU being invited to present its AI integration story at a conference or being mentioned in an article as a case example – which signals success beyond our walls.
- **Robust Support Structure:** By 2028, the governance committee and support roles (like AI training coordinator, AI systems admin) should be running smoothly. The AI Ambassador and mentorship programs should be producing measurable activity (e.g., ambassadors held 20 peer sessions reaching 100 people, or mentors guided 50 mentorship interactions). Also, no major ethical or security incidents – success includes *avoiding* problems: ideally zero significant data breaches or academic scandals related to AI use, due to our preventive measures.
- **Continuous Improvement in Motion:** Evidence that feedback is being used: e.g., tools have been improved or switched based on user feedback, training content updated to cover new AI developments (like if new AI tools emerged in 2027, our program included them by 2028, showing adaptability). Essentially, the initiative should show it's learning and evolving, not static.

**Challenges:** During Phase 2, challenges may include scaling pains such as:

- **Resource Limitations:** Expanding programs and tools to everyone can strain budgets and personnel. For example, training hundreds of faculty members might overwhelm the CEL unless more trainers or self-paced modules are in place. Mitigation: use train-the-trainer models (AI Ambassadors help), seek external grants for specific expansions (maybe a grant to fund additional computing resources or research on our implementation which brings in money), and prioritize which tools give most ROI to allocate licenses accordingly.
- **Uneven Adoption:** Some individuals or departments may lag behind (due to skepticism or simply slower processes). There might be “pockets of resistance” – e.g., a few faculty still banning any AI use, or a department not engaging with training. To address this, continue targeted outreach and find influencers in those areas to champion, or make some aspects opt-out rather than opt-in if necessary (like eventually requiring at least basic training as part of employment expectations). Success stories and peer pressure (in a positive sense) can gradually bring stragglers along.
- **Technology Issues:** As usage increases, we might hit technical bottlenecks: the AI Hub might get overbooked, or an AI system might show bias or errors at scale that weren't obvious in a pilot. We should closely monitor and be ready to tweak models or processes. Perhaps maintain a small tech support team for AI tools to quickly resolve issues as they arise (if students rely on a tutoring AI and it goes down during finals, that's a problem – have contingency or support).
- **Ethical Oversight Load:** With more AI usage, the governance committee's workload increases – reviewing many projects, plus monitoring outcomes for bias. They might need subcommittees or expanded membership by 2028. Ensuring they can keep up is a challenge; potential solution:

empower department-level mini-committees to do initial vetting under central guidelines for smaller projects, only elevate bigger issues to central committee, to distribute work.

- **Keep Humans at Center:** There's a risk that as AI usage normalizes, people become over-reliant or complacent (e.g., staff deferring all decisions to AI outputs). Ongoing training needs to reinforce the human-centered approach and critical evaluation of AI suggestions. Possibly implement audits or scenarios to test if people are staying engaged (like simulate an AI giving a flawed recommendation and see if staff catch it). Maintaining this vigilance is an intangible but important challenge.

### **Phase 3 – Institutionalization and Innovation Leadership (2029 – 2030)**

**Goals:** Solidify and sustain the AI-driven improvements as an integral part of KU's operations and culture, and position KU to adapt to future AI developments. Evaluate and refine what's been implemented, ensuring long-term success and alignment with the university's mission. Begin to shift from catching up with AI to potentially leading in certain areas among peers.

#### **Key Objectives (2029–2030):**

- **Full Institutional Integration:** By 2029, AI integration should move from project status to *business as usual*. This means incorporating AI responsibilities into regular roles and units: for instance, the Center for Engagement and Learning permanently has an “AI in Teaching” specialist or regular workshop series (not Taskforce-led anymore, but operational), the IT department has a dedicated AI systems admin role funded ongoing, the Institutional Research office regularly runs predictive models as part of their standard reporting, and the Career Center treats AI tools as standard offerings in their services. In academics, AI literacy is embedded in the curriculum (possibly even a graduation requirement or at least a very high percentage of students completing AI literacy training). The General Education curriculum update, if any, is fully in effect by 2029 with relevant AI learning outcomes assessed. Essentially, AI considerations are baked into unit strategic plans, new initiatives, and hiring (e.g., new faculty hires are asked about their comfort with instructional tech like AI, etc.).
- **Continuous Improvement and Adaptation Processes:** Establish routine processes to continuously update AI systems and practices. Technology evolves quickly – by 2029–2030, there may be new AI breakthroughs (e.g., more advanced generative AI, AI integration in AR/VR, etc.). KU should be ready to pilot and adopt new useful technologies. To that end, perhaps formalize an “AI Innovation Fund” or ongoing budget line that units can apply to for trying out new AI ideas, overseen by the governance committee or a successor innovation office. Also, ensure contracts and tools are reviewed regularly – not letting things stagnate. For example, do a major review in 2029 of all AI tools to decide renewals or better alternatives as market changes. On the competency side, update training content to include latest case studies or tools. The governance committee might evolve or hand off duties: possibly by 2030, an Office of Digital Innovation or similar could take over day-to-day support and the committee might shift to high-level policy review only. Ensure that feedback channels remain open: even as things normalize, encourage students, faculty, staff to suggest improvements or report issues with AI systems (like a permanent feedback form on the AI hub).

- **Evaluate Outcomes and Impact:** Around 2029, conduct a thorough impact evaluation of the AI initiative. This is somewhat like a capstone assessment: measuring how key metrics changed from the start (pre-2025) to now. Look at student success trends over those years (retention, graduation rates – hopefully improvements that we can at least partly attribute to AI-enabled strategies), operational efficiency metrics (maybe administrative cost per student served or similar metrics to see if we bent any cost curves), faculty teaching and research outputs (maybe easier to get data on teaching innovations, or anecdotally more time for research if AI saved time, etc.), and qualitative outcomes like student and faculty satisfaction. Compile these findings into a report for internal use and possibly an external whitepaper or marketing piece. The goal is to both validate the initiative's success and learn where it didn't achieve expected results. Use this evaluation to guide any final adjustments and to inform the next strategic plan cycle. It may also reveal where KU can push further or set new goals – for instance, maybe we aim to be in the top tier of institutions in some AI-related student outcome by a certain date, building on current momentum.
- **Long-term Sustainability and Leadership:** By 2030, plan for sustaining the momentum beyond the Taskforce lifespan. For example, if not already done, integrate AI leadership responsibilities into permanent roles: perhaps designate a *Director of AI Initiatives* or similar ongoing role to champion and coordinate (if the governance committee winds down, someone still needs to convene people). Also consider external leadership: KU could host a regional conference or symposium on AI in teaching and operations around 2030, showcasing what we and others have learned – this cements our reputation as a leader and keeps our folks motivated and externally connected. Additionally, explore partnerships for advanced opportunities – maybe by 2030, we partner with an R1 on an AI research grant or with a tech company for student internships, leveraging our implemented infrastructure. Essentially, shift some focus to outward-facing opportunities now that internal integration is mature. In operations, identify any frontier projects (maybe exploring the use of AI in new areas like alumni engagement or advanced analytics in budgeting) to keep innovating. But ensure baseline activities are well-maintained: a plan for updating AI training content annually, a tech refresh cycle for infrastructure every few years, and funding earmarked to replace or upgrade systems as needed. By the end of Phase 3, the goal is that AI is simply part of how KU works and innovates, with no need for extraordinary project status.

#### Milestones:

- *2029 (Year 4 of initiative):* Host a high-profile AI in Higher Education Summit at KU (perhaps inviting PASSHE colleagues, regional employers, and our own campus community) to reflect on progress and share experiences. This could double as dissemination and celebration of our achievements. Internally, late 2029 might be when we formalize any structural changes: e.g., if the AI Taskforce governance committee's initial mandate was through 2028, perhaps in 2029 we transition oversight to an existing body (like an IT Governance Committee or an Academic Innovation Council) so that AI oversight is a steady part of governance structure.
- *Fall 2029:* Conduct broad surveys of students and employees about AI initiative impacts – these should show normalized usage patterns (for example, perhaps 90% of students by senior year now report having used AI in coursework and feel comfortable with it, compared to maybe 20% in 2024). Also, by Fall 2029, track the first full cycle of students who experienced the AI-enhanced curriculum all four years (if freshmen of Fall 2025 had some of it, by Spring 2029 they graduate) to see if their outcomes differ (did they retain better? more engaged? etc.).

- *Mid 2030:* Achieve or approach any big outcome targets set. For instance, maybe KU aimed to raise 6-year graduation rate by 5 percentage points this decade; by 2030 we can measure the 2024 cohort's 6-year grad rate to see improvement (not solely due to AI, but AI is part of student success efforts). Another milestone could be cost-effectiveness: possibly demonstrate that while student population or needs grew, staff workload did not increase as much due to AI efficiencies (maybe via ratios like advisor:student ratio effectively improved because AI helped handle more routine queries).
- *End of 2030:* Compile a comprehensive AI Initiative Final Report (or perhaps it's an ongoing annual report that year) documenting outcomes, lessons, and recommendations for the future. This could double as a strategic planning input if KU is crafting a new strategic plan around then. It would state which things are now fully institutionalized, which need further work, and perhaps identify new opportunities beyond initial scope to pursue in the 2030s (like maybe more AI in research, or offering new academic programs related to AI, etc., stepping into a leadership role academically). Essentially, wrap up the formal "initiative" framing and transition into steady state with continuous innovation.
- *Celebratory/Recognitional Milestone:* It's important to acknowledge and celebrate the community's efforts. Possibly in 2030, have a recognition event for AI Ambassadors, key faculty innovators, and staff who led projects – maybe the President's recognition awards that year have a category for "AI Innovation" to institutionalize appreciation. And continue highlighting student successes (like a student who did an AI-related project and then got a great job, etc.). If not already achieved, by 2030 aim to have at least one national or system-level recognition – e.g., an award or spotlight – for KU's transformation with AI.

**Success Indicators:** By the end of 2030, success of the AI initiative would manifest as:

- **Embedded Systems & Practices:** All the mechanisms started by the Taskforce are now permanent. AI literacy training is part of our normal professional development and student orientation. AI tools are included in the annual IT portfolio and budgets. The governance of AI is part of existing committees or administrative routines rather than ad-hoc. In short, the university could continue these efforts without the special Taskforce because they've been absorbed into institutional structures.
- **Mission Enhancement:** Clear evidence that AI initiatives have furthered KU's mission of providing high-quality, accessible education. This might show up in improved student success metrics (higher retention and graduation rates, narrowed achievement gaps if AI tools helped provide more equitable support), improved student satisfaction (survey results indicating students feel supported by innovative resources), and operational metrics indicating we are doing more for students without commensurate cost increases (efficiency gains). If there were concerns about budget or staff limitations, by 2030, perhaps AI has helped avoid needing as many new hires as possible, while still expanding services – a form of cost avoidance that is successful in terms of sustainability and affordability.
- **Graduate Preparedness:** By 2030, KU graduates will be routinely AI-literate and sought after for that attribute. Employers give feedback through the career center or surveys that our grads stand out in understanding how to use AI responsibly in the workplace (this could be anecdotal or measured through employer surveys if available). If asked, virtually all students can articulate how they used AI in their learning and what they learned from it – demonstrating that it's a core

part of their skill set. Additionally, human skills training should be reflected in graduates – perhaps an increase in employers praising our students' soft skills, which, combined with AI skills, makes them very competitive.

- **Institutional Agility:** The university has proven it can adapt to technological change, which bodes well for future changes. For instance, if a new disruptive tech arises in 2030 or beyond, we'd expect KU to handle it similarly proactively. A sign of this would be that by 2030 the community is not fearful of AI or new tech – rather, faculty, staff, and students exhibit a culture of "lifelong learning" and adaptability. If the initiative has been truly successful, the next wave of tech innovation won't require convincing people from scratch; they'll already have the mindset and mechanisms to integrate it in line with our values.
- **Leadership & Reputation:** KU could be seen as a leader among peer institutions for AI integration. Perhaps by 2030 we have formalized knowledge-sharing – maybe hosting an annual AI in Teaching conference or publishing a case study (some of which might have already happened in Phase 2). The success is partly external: e.g., other universities visit or consult with KU on how to implement something similar, or we are invited to collaborate on multi-institution grants because of our known experience. This reputational capital can attract partnerships, grants, maybe even prospective students interested in an AI-forward university. It aligns with KU's ambition to lead responsibly in innovation.
- **No Major Negatives Realized:** Finally, success includes what didn't happen: by 2030, KU navigated the rise of AI without major crises – e.g., academic integrity remained intact through mitigation strategies (no spike in cheating scandals because we addressed the issue early with education and policy), privacy was maintained (no serious data breach via an AI tool), staff morale remained positive (no widespread fear of job loss; instead staff feel upgraded in skills and able to focus on more meaningful work). Essentially, the potential pitfalls were managed such that the net effect of AI at KU is overwhelmingly positive and few if any regrettable incidents occurred.

**Challenges:** Even in this mature phase, some challenges will persist, or new ones emerge:

- **Continuous Vigilance:** It can be challenging to keep the momentum and not fall into complacency once things are routine. There's risk that after initial leaders move on or the novelty fades, some practices might slip (e.g., maybe in 2029 someone introduces a new AI tool without going through proper channels because the urgency seems less). To counter this, the culture of governance and ethics needs to be deeply ingrained – which we assume it is by now, but vigilance is still needed. A challenge is sustaining funding as shiny new projects always come up; we must ensure AI maintenance doesn't get cut when budgets tighten, treating it as core infrastructure.
- **Adapting to New AI Tech:** The AI landscape of 2029–2030 might have surprises (like new regulations, or AI that can do things we haven't planned for). We'll need to adapt policies and training continuously. It might be challenging if, say, some new AI capability challenges our previous approach (for example, if AI can generate video indistinguishable from real, how do we update academic integrity for presentations?). We should lean on the adaptive processes set up, but expecting the unexpected is itself a challenge.

- **Scaling Innovations Beyond KU:** If KU wants to remain on the cutting edge, one challenge is to continue innovating and not just be satisfied. For instance, maybe by 2030 we want to push into offering new academic programs in AI or partnering on research – entering those arenas is a new set of challenges (faculty expertise, funding for research, etc.). That’s optional, but likely if we’ve done so well internally, there will be appetite to leverage that externally.
- **Human Element & Balance:** With AI deeply integrated, a subtle challenge is ensuring the *quality* of human interactions doesn’t diminish. For example, if advisors have AI doing a lot, do they have more time for students in person, or do we inadvertently have them handle even more students? We need to make sure the promise of freeing humans for higher-value engagement is realized in reality (e.g., we didn’t just cut budgets and not allow more time per student, etc.). Regularly checking in on student and employee satisfaction will catch if any such imbalance occurs (like if students say advising became too automated, we might have swung too far). Maintaining the right human-AI balance is an ongoing calibration challenge.
- **Legacy Phase-Out:** The initiative itself as a “project” will phase out; ensuring nothing falls through cracks in that hand-off is key. There might be a challenge in 2029–2030 to make sure that when the Taskforce/focused initiative formally ends, every task has a new permanent owner. A detailed transition plan (covering, say: policy upkeep now belongs to X committee, AI training to Y department, metrics to IR, etc.) is needed to avoid regress. If done, this challenge is mitigated, but it requires conscientious planning.

In conclusion, by following this phased timeline, Kutztown University will move deliberately and successfully from initial exploration to full integration of AI, always guided by our mission and with the involvement of our campus community. The timeline provides a roadmap: Phase 1 ignites the engine with structure and early wins, Phase 2 accelerates and broadens the impact, and Phase 3 ensures we embed these advances into the fabric of KU and continue to evolve. Throughout each phase, careful attention to milestones, assessment, and responsiveness to challenges will be crucial. With the commitment of leadership and the collective effort of faculty, staff, and students, KU is poised not only to navigate the challenges of the AI era but to lead in demonstrating how AI can be harnessed responsibly to enhance a student-centered educational mission. The appendices that follow (one from each working group) provide detailed supporting material and original recommendations that informed this plan, serving as a resource as implementation proceeds.

## Appendices

### Appendix I

#### **Presentation of Findings**

# KUTZTOWN UNIVERSITY ARTIFICIAL INTELLIGENCE (AI) TASKFORCE REPORT

STRATEGIC  
RECOMMENDATIONS  
FOR AI  
INTEGRATION AND  
DEVELOPMENT

## AGENDA HIGHLIGHTS

- Academic Integration and Learning Outcomes
- AI Awareness and Strategic Communication
- AI Competency Development
- Infrastructure and Technology Readiness
- University Operations and Student Affairs
- Student Success and Career Readiness
- Overarching Recommendations for AI Initiative
- Phased Implementation Timeline (2025–2030)

# ACADEMIC INTEGRATION AND LEARNING OUTCOMES

## STRATEGIC PRIORITIES FOR INTEGRATING AI INTO ACADEMIC PROGRAMS



### Contextualize AI in Education

Provide clear rationale and framework for AI use to highlight its benefits and appropriate academic applications.

### Curriculum Integration of AI

Encourage discipline-specific AI literacy standards and update courses to include relevant AI skills.

### Resources and Training for Faculty

Provide centralized AI resources and training programs to equip faculty with teaching tools and ethical guidelines.

### Support and Recognize Faculty

Incentivize faculty through grants, workload adjustments, and recognition to foster AI teaching innovation.

## KEY RECOMMENDATIONS FOR CURRICULUM AND FACULTY SUPPORT

### Clear AI Usage Guidelines

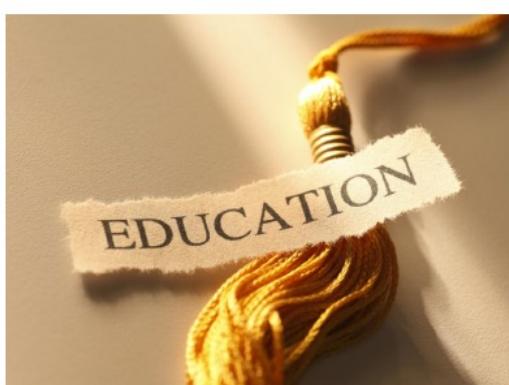
Develop and share clear statements explaining why and when AI should be used in academics, including benefits and drawbacks.

### AI and Workforce Speaker Series

Launch faculty and student speaker events featuring industry experts to connect AI academic use with real-world careers.

### AI Resource Hub Development

Create a centralized online hub offering syllabus language, AI tools, detection guidance, and teaching strategies for faculty.


### Department-Level AI Integration

Encourage departments to design discipline-specific AI plans with objectives, course modules, and new proposals supported by funding.

### Ethical and Effective AI Use

Establish ethical guidelines requiring disclosure of AI use, academic integrity discussions, and AI reflection assignments.

## IMPLEMENTATION STRATEGIES FOR FACULTY DEVELOPMENT AND CURRICULUM UPDATES



### Faculty Development Programs

Implement targeted training sessions to help faculty integrate AI into teaching with practical modules and mentorship support.

### Showcasing Innovative Practices

Create forums like newsletters and symposiums for faculty to share AI teaching successes and challenges, fostering community support.

### Curriculum and Syllabus Updates

Encourage explicit AI-related statements in syllabi and gradual curriculum changes to normalize AI literacy in courses.

### Assessment and Feedback

Adapt assessment strategies to maintain rigor and collect ongoing feedback to improve AI integration in academics.

## SUPPORT AND RESOURCES FOR ACADEMIC AI INTEGRATION



### Grant Funding and Incentives

Small grants encourage faculty to redesign courses integrating AI, signaling institutional support and priority.

### Mentorship Network

Faculty early adopters mentor others and facilitate AI education through training and learning communities.

### Dedicated Staff and Centers

AI curriculum specialists and centers coordinate AI resources and provide faculty support for integration.

### Technical Resources and Recognition

Access to AI tools, cloud platforms, and ethical guidelines aid experimentation; successes are celebrated institutionally.

## AI AWARENESS AND STRATEGIC COMMUNICATION

## STRATEGIC PRIORITIES FOR CAMPUS-WIDE AI AWARENESS

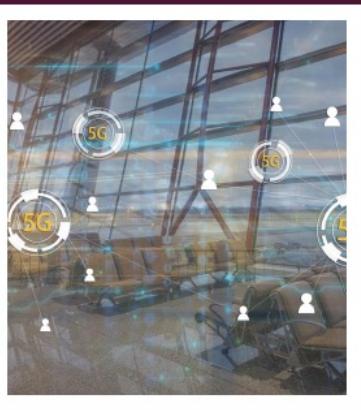


### Understanding Stakeholder Perspectives

Focus groups gather insights on stakeholder knowledge, concerns, and enthusiasm about AI adoption at KU.

### Targeted and Transparent Messaging

Develop clear messages tailored to audience concerns, emphasizing transparency and empowerment with AI.


### Multi-Channel Engagement Strategy

Use digital, print, in-person, and peer outreach channels to reinforce AI awareness and sustain engagement.

### Positive and Inclusive Tone

Promote a constructive, inclusive environment highlighting success stories and openly addressing concerns.

## KEY RECOMMENDATIONS FOR STAKEHOLDER ENGAGEMENT AND MESSAGING



### Conduct Stakeholder Focus Groups

Organize diverse focus groups to explore AI knowledge, concerns, opportunities, and support needs among campus stakeholders.

### Develop Tailored Message Maps

Create communication plans addressing concerns and knowledge gaps with clear messages and actionable steps for each group.

### Recruit and Empower AI Champions

Identify and train campus influencers to advocate AI initiatives and engage skeptics constructively.

### Implement Multi-Channel Campaign

Use emails, website, social media, events, workshops, and printed materials to maintain ongoing AI communication.

## IMPLEMENTATION STRATEGIES FOR COMMUNICATION AND LEADERSHIP INVOLVEMENT

| Leverage Existing Channels                                                                                                 | Visible Leadership Involvement                                                                                    | Inclusive Language and Design                                                                                     | Highlight Safeguards and Policies                                                                         | Monitor Sentiment and Address Concerns                                                                | Celebrate Milestones Publicly                                                                     |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Use current university communication platforms to integrate AI messaging, normalizing AI discussions in familiar settings. | University leaders should actively promote AI initiatives, legitimizing efforts and increasing stakeholder trust. | Ensure AI communications use simple, inclusive language and accessible visuals to reach diverse campus audiences. | Clearly communicate AI data privacy and ethical policies to address fears and promote responsible AI use. | Use feedback to identify and counter misinformation, building trust through transparency and empathy. | Share AI initiative successes to motivate community engagement and demonstrate tangible benefits. |

## SUPPORT AND RESOURCES FOR COMMUNICATION EFFORTS



### Staffing and Coordination

Dedicated communications professionals should coordinate the AI awareness campaign to ensure consistency and scheduling.

### Budget for Materials and Events

Allocate funds for brochures, videos, branded items, and honoraria to support quality outreach and events.

### Tools and Platforms

Utilize communication tools like social media managers, email marketing, survey software, and web support for outreach.

### Training and Documentation

Provide training and resources to AI champions and maintain documentation to track communications and improve messaging.

# AI COMPETENCY DEVELOPMENT

## STRATEGIC PRIORITIES FOR AI LITERACY AND SKILL DEVELOPMENT



### AI Competency Domains

Six core AI competency areas guide curriculum design, from literacy to ethical engagement and tool proficiency.

### Role-Based Training Pathways

Customized AI training pathways tailored for faculty, staff, and students ensure relevant skill development.

### Peer Leadership and Mentorship

AI Ambassadors and mentors provide peer support, enhancing hands-on and personalized AI skill growth.

### Recognition and Credentialing

Digital badges and certificates motivate learners and formally recognize AI competencies within KU community.



## KEY RECOMMENDATIONS FOR CURRICULUM INTEGRATION AND CREDENTIALING

### Curriculum Integration of AI

Embed AI competencies across academic programs and co-curricular activities for comprehensive learning reinforcement.

### Tiered AI Training Programs

Offer Beginner to Advanced AI training levels with defined objectives, hands-on projects, and assessments for certification.

### AI Ambassador Program

Develop peer-led AI ambassadors to support training, provide expertise, and foster campus-wide AI literacy.

### Mentorship and Certification

Implement structured AI mentorship and offer certifications and badges to recognize competencies and progress.

## IMPLEMENTATION STRATEGIES FOR TRAINING AND MENTORSHIP



### Needs Assessment and Customization

Conduct surveys to identify AI skill levels and training priorities for tailored content. Customize training to address specific group needs and gaps.

### Collaborative Content Development

Form cross-departmental teams to create interdisciplinary AI training materials leveraging expertise from multiple fields.

### Flexible Delivery Modes

Offer training through in-person workshops, live webinars, and self-paced modules to accommodate busy schedules and learning preferences.

### Incentivize and Institutional Integration

Integrate AI training with HR and academic programs, offer rewards, and recognize completion to motivate participation.

## SUPPORT AND RESOURCES FOR COMPETENCY PROGRAMS



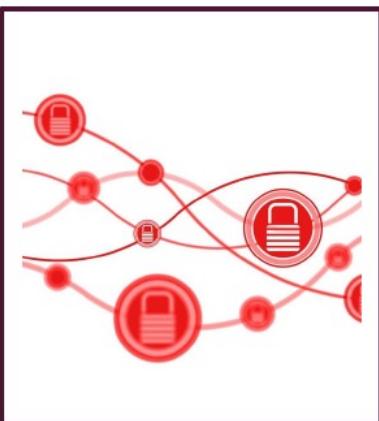
### **Dedicated Personnel and Leadership**

Assign an AI Training Coordinator and involve CEL and HR to manage curriculum and integration.

### **Training Infrastructure and Tools**

Use LMS or specialized platforms for modules, badges, and provide software environments for hands-on AI training.

### **Budget for Materials and Incentives**


Allocate funds for high-quality materials, digital badges, participant rewards, and stipends for ambassadors.

### **Facilities and Continuous Assessment**

Provide equipped labs or cloud access for training and continuously assess program effectiveness with data.

# INFRASTRUCTURE AND TECHNOLOGY READINESS

## STRATEGIC PRIORITIES FOR SECURE AND SCALABLE AI INFRASTRUCTURE



### Data Security and Governance

Protecting university data is critical through data sensitivity labeling and Data Loss Prevention to block unauthorized sharing.

### Infrastructure Capacity and Scalability

KU must upgrade computing power and storage to support AI workloads and enable flexible sandbox environments for testing.

### Accessible AI Tools and Platforms

Expanding campus-wide licensing ensures broad access to vetted AI tools for diverse users with IT support.

### Ongoing Support and Skill Readiness

Sustained IT support and continuous AI training for staff are essential to adapt to evolving AI technologies.

## KEY RECOMMENDATIONS FOR SECURITY, INNOVATION HUB, AND TOOL ACCESS

### Phase Two Security Guardrails

Implement data sensitivity labels and data loss prevention to protect confidential AI data from unauthorized access.

### Access and Identity Management

Enhance identity controls with multi-factor authentication and role-based access for secure AI tool usage.

### AI Innovation Hub

Create a secure AI Innovation Hub for safe experimentation and interdisciplinary collaboration across campus.

### Expanded AI Tool Licensing

Broaden licensing of AI tools campus-wide to accelerate skill building and application development.

### Ongoing Support and Funding

Secure sustainable funding and staff training to maintain and support AI infrastructure long-term.

### Leverage Cloud and External Resources

Use cloud platforms and partnerships to scale AI resources cost-effectively and stay aligned with trends.

## IMPLEMENTATION STRATEGIES FOR PHASED ROLLOUT AND GOVERNANCE



### Phased Security Rollout

Implement security controls gradually starting with pilots to minimize disruptions and fine-tune rules before full deployment.

### Governance Policy Development

Collaborate with stakeholders to finalize AI use policies, ensuring clear guidelines, compliance, and broad communication.

### AI Innovation Hub Pilot

Launch targeted AI projects to configure and refine the innovation hub environment before broad access and support.

### IT Training and Support

Provide specialized training for IT staff and power users to build expertise and ensure smooth AI tool adoption.



## SUPPORT AND RESOURCES FOR INFRASTRUCTURE AND IT STAFFING

### Funding and Budget Allocation

Secure capital for hardware and software and recurring funds for ongoing IT costs. Frame them as strategic investments aligned with institutional goals.

### IT Staffing and Expertise

Hire or train dedicated AI system engineers to manage infrastructure and support AI tool integration, including student assistants for experiential learning.

### Vendor Partnerships and Support

Leverage vendor training and consulting to optimize AI environment setup and maintain relationships for updates and feature influence.

### Monitoring and Interdepartmental Coordination

Use monitoring tools to track AI system usage and incidents, while maintaining governance collaboration between IT and academic divisions for aligned technology deployment.

# UNIVERSITY OPERATIONS AND STUDENT AFFAIRS

## STRATEGIC PRIORITIES FOR OPERATIONAL EFFICIENCY AND STUDENT SUPPORT



### Operational Efficiency and Automation

Implement AI to automate routine tasks in facilities, HR, and enrollment, saving time and reducing costs while maintaining quality.

### Enhanced Student Services and 24/7 Support

Use AI chatbots and early alert systems to provide personalized, round-the-clock support in advising, mental health, and residence life.

### Human-Centric AI Implementation

Focus on AI augmenting staff roles, preserving human judgment and empathy in decision-making and student interactions.

### Ethical Use and Governance

Establish policies and committees to ensure AI is used ethically, transparently, and without bias, protecting privacy and fairness.

## KEY RECOMMENDATIONS FOR GOVERNANCE, TRAINING, AND PILOT PROJECTS

### AI Governance Committee

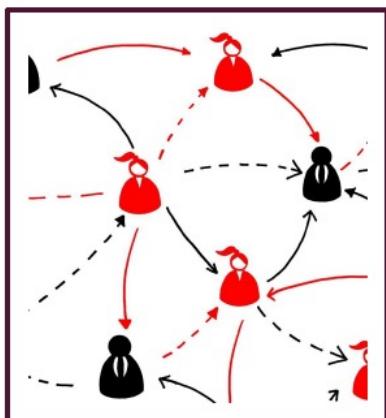
Establish a diverse AI Ethics & Operations Committee to evaluate and approve AI use cases aligned with institutional values.

### AI Literacy and Training

Invest in AI literacy for staff and administrators to ensure effective use and responsible adoption of AI tools.

### Pilot Projects with Metrics

Implement small-scale AI pilots with clear metrics to evaluate success before scaling initiatives.


### External Collaboration

Partner with vendors, institutions, and consortia to access AI expertise and cost-effective solutions.

### Mission Alignment

Ensure AI initiatives align with KU's mission to support student-centered, accessible, and equitable operations.

## IMPLEMENTATION STRATEGIES FOR PROCESS REVIEW, PILOTS, AND ETHICS



### Process Mapping and Target Identification

Map key operational workflows to identify inefficiencies suitable for AI automation and involve staff for insights and buy-in.

### Cross-Department Pilot Teams

Form diverse pilot teams including end-users, IT, and data specialists to ensure well-rounded AI project implementation.

### Stakeholder Communication and Change Management

Communicate AI benefits clearly, address concerns, and appoint change champions to support smooth adoption and staff engagement.

### Data Ethics and Review Protocols

Implement ethical review protocols and conduct audits to ensure responsible AI use and address bias and privacy concerns.

## SUPPORT AND RESOURCES FOR OPERATIONAL AI ADOPTION



### Executive Sponsorship & Policy

Leadership backing is essential to allocate resources and set AI adoption priorities with clear guidelines.

### Funding Tools and Vendors

Budget planning for AI tools includes costs and potential savings, supported by grants and internal reinvestment.

### Technical Integration Support

AI tools require IT resources to integrate with existing systems using APIs and middleware for data flow.

### Maintenance and Monitoring

Ongoing upkeep and performance tracking ensure AI tools remain effective and deliver measurable outcomes.

# STUDENT SUCCESS AND CAREER READINESS

## STRATEGIC PRIORITIES FOR AI LITERACY, RETENTION, AND CAREER PREPARATION

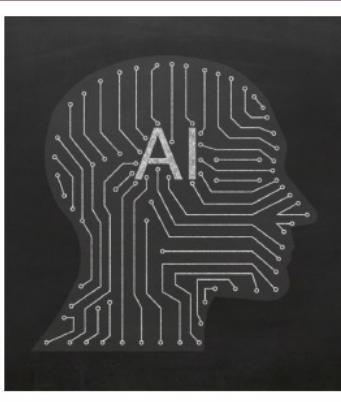


### Integrating AI Literacy

Ensure all students gain foundational AI knowledge and responsible usage skills as a core competency.

### Data-Driven Interventions

Use AI analytics to identify at-risk students early and provide tailored support to improve retention.


### Career Readiness with AI

Prepare students for AI-influenced job markets by embedding AI skills into career development programs.

### Emotional Intelligence and Ethics

Emphasize human skills like empathy, communication, and ethics alongside AI capabilities for success.

## KEY RECOMMENDATIONS FOR CURRICULUM, ANALYTICS, AND CAREER SERVICES



### AI Literacy in Curriculum

Introduce AI essentials early, teaching core concepts, ethics, and practical AI skills through modules and micro-credentials.

### Predictive Analytics for Retention

Use machine learning on student data to identify at-risk students early and guide intervention strategies.

### Centralized Student Data

Create a unified data system integrating diverse student info for holistic AI analysis and improved insights.

### AI in Career Services

Incorporate AI tools into career prep including resume critique, job matching, and interview practice.

## IMPLEMENTATION STRATEGIES FOR ORIENTATION, DATA, AND CAREER INTEGRATION



### AI Literacy in Orientation

Introduce AI awareness in student orientation with interactive demos and ethical discussions to engage new students.

### Data Team & Predictive Analytics

Form a cross-department team to develop and implement predictive analytics models for student retention and early alerts.

### AI Learning Tools Pilot

Pilot AI-powered learning aids like flashcards and writing assistants to enhance student learning outcomes with feedback.

### Career Services AI Integration

Adopt AI tools for resume review, interview practice, and alumni job matching to boost student career readiness.

## SUPPORT AND RESOURCES FOR STUDENT SUCCESS INITIATIVES



### Collaborative Leadership

Joint leadership teams from Academic and Student Affairs ensure alignment and resource sharing for student success initiatives.

### Technology and Software Investment

Investing in analytics platforms, data tools, and AI-driven software supports predictive modeling and career services enhancements.

### Staffing and Training

Hiring data analysts and training faculty and advisors ensure effective use of AI tools and ethical guidance in classrooms.

### Policy and Impact Monitoring

Develop clear AI use policies and monitor student success metrics to guide improvements and secure funding.

# OVERARCHING RECOMMENDATIONS FOR AI INITIATIVE

## UNIFIED VISION, GOVERNANCE, AND INFRASTRUCTURE INVESTMENT

### **Unified AI Vision and Strategy**

Develop a university-wide AI plan aligning goals and objectives to advance the institutional mission cohesively.

### **Strong Governance and Policy Frameworks**

Establish a governance committee to oversee AI ethics, policies, and project approvals ensuring responsible use.

### **Secure and Scalable Infrastructure Investment**

Invest in robust IT infrastructure and security measures to support scalable, safe AI tool deployment campus-wide.



## UNIVERSITY-WIDE AI LITERACY, ETHICAL CULTURE, AND COLLABORATION



### Comprehensive AI Literacy Programs

Implement multi-tiered AI training for students, faculty, and staff to build baseline and advanced competencies.

### Ethical AI Culture

Promote transparency, human oversight, and ethical principles like privacy and fairness in AI use campus-wide.

### Collaboration and Knowledge Sharing

Foster cross-departmental AI projects, forums, and centralized repositories to accelerate innovation and avoid silos.

## RESOURCE ALLOCATION, ASSESSMENT, AND COMMUNICATION STRATEGIES



### Sustained Resource Allocation

Treat AI initiatives as strategic priorities by dedicating resources and integrating goals into planning and budgets.

### Continuous Impact Assessment

Establish metrics to evaluate AI's impact on student, operational, and faculty outcomes with regular reporting.

### Transparent Communication

Maintain open communication through updates, town halls, and feedback to build trust and community buy-in.

### Adaptive Change Management

Leaders should be responsive to feedback, evolving plans to maintain positive momentum and success.

# PHASED IMPLEMENTATION TIMELINE (2025– 2030)



## PHASE 1: FOUNDATIONAL SETUP AND EARLY PILOTS (2025–2026)

### **Governance & Policy Formation**

Establish an AI Governance Committee and draft key AI policies to guide ethical and secure AI use.

### **Awareness & Communication**

Launch AI awareness campaigns including stakeholder focus groups and multi-channel communications.

### **Training & Pilot Education**

Develop pilot AI literacy modules for students and initial AI workshops for faculty and staff.

### **Infrastructure & Pilot Projects**

Assess infrastructure, implement quick wins, set up AI Innovation Hub, and plan operational pilot projects.

## PHASE 2: SCALING AND INTEGRATION ACROSS CAMPUS (2027–2028)

### Academic AI Integration

Expand AI use in courses and update learning outcomes with AI competencies by 2028.

### Comprehensive AI Training

Launch tiered AI certificate programs and the AI Ambassador program for faculty, staff, and students.

### Infrastructure and Tools

Complete AI infrastructure upgrades and provide campus-wide access to AI tools by 2028.

### Operational AI Expansion

Scale successful AI pilots and add new AI tools in admissions, advising, HR, and facilities operations.

### Student Support Transformation

Institutionalize AI-enabled advising and career services to improve retention and career readiness.

## PHASE 3: INSTITUTIONALIZATION AND INNOVATION LEADERSHIP (2029–2030)



### Full Institutional Integration

By 2029, AI becomes a standard part of KU's operations, roles, and curriculum across all units.

### Continuous Improvement and Adaptation

KU establishes ongoing processes to update AI systems and pilot emerging technologies regularly.

### Evaluation of Outcomes and Impact

A comprehensive impact assessment in 2029 measures AI's effects on student success and efficiency.

### Sustainability and Leadership

By 2030, KU plans sustained AI leadership through new roles, partnerships, and external engagement.

---

### **Academic Transformation**

The AI initiative seeks to transform academic programs to better integrate AI knowledge and skills across disciplines.

### **Enhancing AI Literacy**

Campus-wide efforts aim to improve AI literacy among students, faculty, and staff for broader understanding and engagement.

### **Competency Building**

Developing AI competencies ensures students and faculty can effectively use and innovate with AI technologies.

### **Infrastructure Readiness**

Preparing campus infrastructure is essential to support AI integration and scalable technological advancements.

## **CONCLUSION**