What does an Industrial Mathematician really do?

By

Dr. Francis J. Vasko
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

He or she uses mathematics to formulate and solve real-world problems.
Most times, the size of these problems dictate the need for these solution procedures to be computer-based.
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Some major Career Paths for Industrial Mathematicians:

- Federal Government—NSA, CIA, etc.
- Statistician
- Actuary
- Operations Researcher
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

What is Operations Research?

The use of mathematical (optimization) models to provide guidelines to managers for making effective decisions.
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Mathematical Optimization is everywhere
Finance
Marketing
E-business
Telecommunications
Production Planning
Transportation Planning
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Industrial Projects that I have been involved with
- Determining Continuous Caster Configurations
- Optimal Selection of Ingot Sizes
- Solving a Fuzzy Cutting Stock Problem
- Optimal Metallurgical Grade Assignment
- Dynamic Cold Ingot Substitution
- Planning Mother Plate Requirements
- Consolidating Product Sizes to Minimize Inventory Levels
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

More Industrial Projects that I have been involved with

- Optimally Loading Structural Steel on Rail Cars
- Optimal Assignment of Slabs to Orders
- Optimally Determining Bloom Lengths
- Replenishing Rectangular Stock Sizes
- Optimizing Water Spray Settings on a CC
- Optimally Balancing Trim Loss and Setups
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Still More Industrial Projects that I have been involved with

- Real-Time Optimal Cutting of Steel Beams
- Optimal Coal Blending Models for Cokemaking
- Meltshop Scheduling in the Steel Industry
- Strategic Planning
- Optimizing Performance Funding
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Somewhat different applications of Operations Research

☐ Does Marilyn Know her Game Theory
☐ Math Programming and LL Baseball
☐ Math Programming takes the fun out of SUDOKU Puzzles
☐ OR and Women’s College Basketball
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

My Background

- BS Mathematics Education (KU)
- MS Theoretical Mathematics (LU)
- Two Years Teaching Junior HS Mathematics
- MS Operations Research (LU)
- 25 Years Industrial Mathematician
- Ph.D. Operations Research (LU)—got while working fulltime in industry
- Math Professor/Industrial Consultant
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Strategic Planning: Operations Research to the Rescue

Work done by Dr. Ken Stott and Dr. Francis J. Vasko for a Strategic Planning Committee. The Goals were to evaluate alternative operating and marketing strategies.
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Strategic Planning Committee Membership
Corporate middle management

- Sales
- Marketing
- Accounting
- Operations
- Research
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Basic Strategic Planning Model

- Mill capacity constraints
- Market demand constraints
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Basic Strategic Planning Model Math Formulation
Maximize \(P = \sum (PHPi)(XHPi) + \sum (PLPi)(XLPi) \)
Subject to:
\(\sum (RHPi)(XHPi) \geq MIN_HRS_HM \)
\(\sum (RHPi)(XHPi) \leq MAX_HRS_HM \)
\(\sum (RLPi)(XLPi) \geq MIN_HRS_LM \)
\(\sum (RLPi)(XLPi) \leq MAX_HRS_LM \)
\(XHPi \leq DEMAND_HPi \)
\(XLPi \leq DEMAND_LPi \)
\(XHPi \geq 0 \)
\(XLPi \geq 0 \)
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Critique of Basic Model Results

- Sales department very unhappy—results totally unrealistic
- Sales claimed “We sell structural steel used to make complete buildings”.
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Sales “Complete Buildings” Constraints.

- Sample model produced 125,000 of the 340,000 market demand or about 37% of the market demand.
- Sales contended that each product in the model should have been produced about 37% of its market demand—within a 15% tolerance of that value.
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

“Complete Buildings” Constraints.

\[\sum X_{HPi} + \sum X_{LPi} = TPROD \]

\[\frac{X_{HPi}}{TPROD} \leq \left(\frac{DEMAND_{HPi}}{TDEMAND} \right)(1+TOL) \]
\[\frac{X_{HPi}}{TPROD} \geq \left(\frac{DEMAND_{HPi}}{TDEMAND} \right)(1-TOL) \]

\[\frac{X_{LPi}}{TPROD} \leq \left(\frac{DEMAND_{LPi}}{TDEMAND} \right)(1+TOL) \]
\[\frac{X_{LPi}}{TPROD} \geq \left(\frac{DEMAND_{LPi}}{TDEMAND} \right)(1-TOL) \]
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Refined Strategic Planning Model Critique

Sales felt the results were very realistic and endorsed the use of the refined model by the Strategic Planning Committee.
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Strategic Planning Model Uses

Over a period of several years, the Strategic Planning Committee made widespread use of the refined linear programming model for evaluating various marketing and operating scenarios.
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Strategic Planning Model Uses

- The confidence of the committee in the accuracy of the model results grew with each analysis that was performed.
- The “fun” part was explaining any counter intuitive model results to the committee members.
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Second Heavy Products Mill Scenario

Sales, based on calculations done by Accounting, wanted to open an idled second heavy products mill.
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Second Heavy Products Mill Scenario:
Sales Rationale

- Unmet heavy products demand of 160,378 tons (LP model)
- Heavy products mill operating at maximum capacity
- Operate second heavy products mill between 500 and 1000 hours
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Second Heavy Products Mill Scenario:
Accounting Calculations
- Operate second heavy products mill for 500 hours
- Expect to produce 19,968 tons of heavy product 1 at $180 profit/ton = $3,594,240 profit
- Expect to produce 11,154 tons of heavy product 2 at $100 profit/ton = $1,115,400 profit
- Expect to produce 3,690 tons of heavy product 3 at $60 profit/ton = $221,400 profit
- About 34,800 total additional tons
- About $4.9 million total additional profit
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Second Heavy Products Mill Scenario:
Linear Programming Model Results

- About 5,000 total additional tons
- About $577,000 total additional profit
- Operating hours on 1st heavy products mill reduced from 1000 to only 580
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Why the discrepancy?
- Accounting calculations did not account for Sales “complete buildings” constraints!
- The second heavy products mill only increased heavy products capacity—no increase in light products capacity.
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Second Heavy Products Mill Conclusions:
After reviewing the linear programming model results, the Strategic Planning Committee unanimously decided NOT to recommend reopening the second heavy products mill.
What does an Industrial Mathematician really do?
By Dr. Francis J. Vasko

Overall Conclusions:

A linear programming model was developed and used extensively to evaluate alternative operating and marketing scenarios.
Strategic Planning: OR to the Rescue was published in

vasko@kutztown.edu